Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Sci ; 29(1): 29, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534851

ABSTRACT

BACKGROUND: Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. METHODS: In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. RESULTS: Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. CONCLUSIONS: These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC.


Subject(s)
Antineoplastic Agents , Biological Products , Flavonoids , Prostatic Neoplasms, Castration-Resistant , Androgens/pharmacology , Androgens/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Flavonoids/pharmacology , Glycolates , Glycols/pharmacology , Glycols/therapeutic use , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/pharmacology , Male , Nitriles/pharmacology , Nitriles/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/therapeutic use
2.
Commun Biol ; 2: 105, 2019.
Article in English | MEDLINE | ID: mdl-30911680

ABSTRACT

PKM2 is a key metabolic enzyme central to glucose metabolism and energy expenditure. Multiple stimuli regulate PKM2's activity through allosteric modulation and post-translational modifications. Furthermore, PKM2 can partner with KDM8, an oncogenic demethylase and enter the nucleus to serve as a HIF1α co-activator. Yet, the mechanistic basis of the exon-10 region in allosteric regulation and nuclear translocation remains unclear. Here, we determined the crystal structures and kinetic coupling constants of exon-10 tumor-related mutants (H391Y and R399E), showing altered structural plasticity and reduced allostery. Immunoprecipitation analysis revealed increased interaction with KDM8 for H391Y, R399E, and G415R. We also found a higher degree of HIF1α-mediated transactivation activity, particularly in the presence of KDM8. Furthermore, overexpression of PKM2 mutants significantly elevated cell growth and migration. Together, PKM2 exon-10 mutations lead to structure-allostery alterations and increased nuclear functions mediated by KDM8 in breast cancer cells. Targeting the PKM2-KDM8 complex may provide a potential therapeutic intervention.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Exons , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Thyroid Hormones/chemistry , Thyroid Hormones/genetics , Thyroid Hormones/metabolism , Active Transport, Cell Nucleus , Allosteric Regulation , Histone Demethylases/chemistry , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Immunohistochemistry , Models, Molecular , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Conformation , Thyroid Hormone-Binding Proteins
3.
Cell Death Dis ; 10(2): 68, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683841

ABSTRACT

KDM4/JMJD2 Jumonji C-containing histone lysine demethylases (KDM4A-D) constitute an important class of epigenetic modulators in the transcriptional activation of cellular processes and genome stability. Interleukin-8 (IL-8) is overexpressed in gastric cancer, but the mechanisms and particularly the role of the epigenetic regulation of IL-8, are unclear. Here, we report that KDM4B, but not KDM4A/4C, upregulated IL-8 production in the absence or presence of Helicobacter pylori. Moreover, KDM4B physically interacts with c-Jun on IL-8, MMP1, and ITGAV promoters via its demethylation activity. The depletion of KDM4B leads to the decreased expression of integrin αV, which is exploited by H. pylori carrying the type IV secretion system, reducing IL-8 production and cell migration. Elevated KDM4B expression is significantly associated with the abundance of p-c-Jun in gastric cancer and is linked to a poor clinical outcome. Together, our results suggest that KDM4B is a key regulator of JNK/c-Jun-induced processes and is a valuable therapeutic target.


Subject(s)
Carcinogenesis/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , MAP Kinase Signaling System , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Helicobacter pylori/metabolism , Humans , Integrin alphaV/metabolism , Interleukin-8/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Matrix Metalloproteinase 1/metabolism , Prognosis , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Survival Rate , Transcriptional Activation , Transfection
4.
Cell Microbiol ; 20(12): e12947, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30151951

ABSTRACT

Cholesterol-α-glucosyltransferase (CGT) encoded by the type 1 capsular polysaccharide biosynthesis protein J (capJ) gene of Helicobacter pylori converts cellular cholesterol into cholesteryl glucosides. H. pylori infection induces autophagy that may increase bacterial survival in epithelial cells. However, the role of H. pylori CGT that exploits lipid rafts in interfering with autophagy for bacterial survival in macrophages has not been investigated. Here, we show that wild-type H. pylori carrying CGT modulates cholesterol to trigger autophagy and restrain autophagosome fusion with lysosomes, permitting a significantly higher bacterial burden in macrophages than that in a capJ-knockout (∆CapJ) mutant. Knockdown of autophagy-related protein 12 impairs autophagosome maturation and decreases the survival of internalised H. pylori in macrophages. These results demonstrate that CGT plays a crucial role in the manipulation of the autophagy process to impair macrophage clearance of H. pylori.


Subject(s)
Autophagy/physiology , Cholesterol/metabolism , Glucosyltransferases/metabolism , Helicobacter pylori/metabolism , Macrophages/microbiology , Animals , Autophagosomes/metabolism , Autophagy-Related Protein 12/genetics , Autophagy-Related Protein 12/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Knockout Techniques , Glucosyltransferases/genetics , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Host-Pathogen Interactions/physiology , Lysosomes/metabolism , Lysosomes/microbiology , Membrane Microdomains/metabolism , Mice
5.
J Med Chem ; 57(14): 5975-85, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24971742

ABSTRACT

The KDM4/JMJD2 Jumonji C-containing histone lysine demethylases (KDM4A-KDM4D), which selectively remove the methyl group(s) from tri/dimethylated lysine 9/36 of H3, modulate transcriptional activation and genome stability. The overexpression of KDM4A/KDM4B in prostate cancer and their association with androgen receptor suggest that KDM4A/KDM4B are potential progression factors for prostate cancer. Here, we report the crystal structure of the KDM4B·pyridine 2,4-dicarboxylic acid·H3K9me3 ternary complex, revealing the core active-site region and a selective K9/K36 site. A selective KDM4A/KDM4B inhibitor, 4, that occupies three subsites in the binding pocket is identified by virtual screening. Pharmacological and genetic inhibition of KDM4A/KDM4B significantly blocks the viability of cultured prostate cancer cells, which is accompanied by increased H3K9me3 staining and transcriptional silencing of growth-related genes. Significantly, a substantial portion of differentially expressed genes are AR-responsive, consistent with the roles of KDM4s as critical AR activators. Our results point to KDM4 as a useful therapeutic target and identify a new inhibitor scaffold.


Subject(s)
Enzyme Inhibitors/pharmacology , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/chemistry , Molecular Targeted Therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Stilbenes/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Kinetics , Male , Models, Molecular , Prostatic Neoplasms/enzymology , Stilbenes/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...