Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antib Ther ; 5(1): 1-10, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35005430

ABSTRACT

BACKGROUND: COBRA™ (COnditional Bispecific Redirected Activation) T-cell engagers are designed to target solid tumors as a single polypeptide chain prodrug that becomes activated by proteolysis in the tumor microenvironment. One COBRA molecule comprises seven Ig domains: three single-domain antibodies (sdAbs) recognizing a tumor target or human serum albumin (HSA), and CD3ε-binding variable fragment heavy chain (VH) and variable fragment light chain (VL) and their inactivated counterparts, VHi and VLi. Pairing of VH and VL, and VLi and VHi into single-chain variable fragments (Fv) is prevented by shortened inter-domain linkers. Instead, VH and VL are expected to interact with VLi and VHi, respectively, thus making a diabody whose binding to CD3ε on the T-cells is impaired. METHODS: We analyzed the structure of an epidermal growth factor receptor (EGFR) COBRA in solution using negative stain electron microscopy (EM) and small-angle X-ray scattering (SAXS). RESULTS: We found that this EGFR COBRA forms stable monomers with a very dynamic interdomain arrangement. At most, only five domains at a time appeared ordered, and only one VH-VL pair was found in the Fv orientation. Nonenzymatic posttranslational modifications suggest that the CDR3 loops in the VL-VHi pair are exposed but are buried in the VH-VLi pair. The MMP9 cleavage rate of the prodrug when bound to recombinant EGFR or HSA is not affected, indicating positioning of the MMP9-cleavable linker away from the EGFR and HSA binding sites. CONCLUSION: Here, we propose a model for EGFR COBRA where VH and VLi form an Fv, and VL and VHi do not, possibly interacting with other Ig domains. SAXS and MMP9 cleavage analyses suggest that all COBRA molecules tested have a similar structural architecture.

2.
MAbs ; 12(1): 1792130, 2020.
Article in English | MEDLINE | ID: mdl-32684124

ABSTRACT

Conditionally active COBRA™ (COnditional Bispecific Redirected Activation) T cell engagers are engineered to overcome the limitations of inherently active first-generation T cell engagers, which are unable to discern between tumor and healthy tissues. Designed to be administered as prodrugs, COBRAs target cell surface antigens upon administration, but engage T cells only after they are activated within the tumor microenvironment (TME). This allows COBRAs to be preferentially turned on in tumors while safely remaining inactive in healthy tissue. Here, we describe the development of the COBRA design and the characterization of these conditionally active T cell engagers. Upon administration COBRAs are engineered to bind to tumor-associated antigens (TAAs) and serum albumin (to extend their half-life in circulation), but are inhibited from interacting with the T cell receptor complex signaling molecule CD3. In the TME, a matrix metalloproteinase (MMP)-mediated linker cleavage event occurs within the COBRA construct, which rearranges the molecule, allowing it to co-engage TAAs and CD3, thereby activating T cells against the tumor. COBRAs are conditionally activated through cleavage with MMP9, and once active are highly potent, displaying sub-pM EC50s in T cell killing assays. Studies in tumor-bearing mice demonstrate COBRA administration completely regresses established solid tumor xenografts. These results strongly support the further characterization of the novel COBRA design in preclinical development studies.


Subject(s)
Antibodies, Bispecific , Antigens, Neoplasm , Antineoplastic Agents, Immunological , Immunotherapy , Lymphocyte Activation , Neoplasms, Experimental/therapy , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , HT29 Cells , Humans , Jurkat Cells , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms, Experimental/immunology , Protein Engineering , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...