Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Plant Sci ; 10(3): e11476, 2022.
Article in English | MEDLINE | ID: mdl-35774989

ABSTRACT

Premise: Transient gene expression systems are powerful tools for studying gene interactions in plant species without available or stable genetic transformation protocols. We optimized a petal protoplast transformation protocol for Sinningia speciosa, a model plant, to study the development of floral symmetry. Methods and Results: A high yield of petal protoplasts was obtained using a 6-h enzyme digestion in a solution of 1.5% cellulase and 0.4% macerozyme. Modest transfection efficiency (average 41.4%) was achieved. The viability of the transfected protoplasts remained at more than 90%. A fusion of green fluorescent protein and CYCLOIDEA (SsCYC), the Teosinte branched 1/Cincinnata/Proliferating cell factor transcription factor responsible for floral symmetry, was subcellularly localized inside the nuclei of the protoplasts. Transiently overexpressing SsCYC indicates the success of this system, which resulted in the predicted increased (but nonsignificant) expression of its known target RADIALIS (SsRAD1), consistent with gene network expectations. Conclusions: The transient transfection system presented herein can be effectively used to study gene-regulatory interactions in Gesneriaceae species.

2.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35216188

ABSTRACT

The establishment of dorsal-ventral (DV) petal asymmetry is accompanied by differential growth of DV petal size, shape, and color differences, which enhance ornamental values. Genes involved in flower symmetry in Sinningia speciosa have been identified as CYCLOIDEA (SsCYC), but which gene regulatory network (GRN) is associated with SsCYC to establish DV petal asymmetry is still unknown. To uncover the GRN of DV petal asymmetry, we identified 630 DV differentially expressed genes (DV-DEGs) from the RNA-Seq of dorsal and ventral petals in the wild progenitor, S. speciosa 'ES'. Validated by qRT-PCR, genes in the auxin signaling transduction pathway, SsCYC, and a major regulator of anthocyanin biosynthesis were upregulated in dorsal petals. These genes correlated with a higher endogenous auxin level in dorsal petals, with longer tube length growth through cell expansion and a purple dorsal color. Over-expression of SsCYC in Nicotiana reduced petal size by regulating cell growth, suggesting that SsCYC also controls cell expansion. This suggests that auxin and SsCYC both regulate DV petal asymmetry. Transiently over-expressed SsCYC, however, could not activate most major auxin signaling genes, suggesting that SsCYC may not trigger auxin regulation. Whether auxin can activate SsCYC or whether they act independently to regulate DV petal asymmetry remains to be explored in the future.


Subject(s)
Flowers/genetics , Indoleacetic Acids/metabolism , Lamiales/genetics , Transcriptome/genetics , Flowers/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Lamiales/metabolism , Signal Transduction/genetics , Nicotiana/genetics , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...