Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 61(51): 21011-21015, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36517465

ABSTRACT

CdMnO3 had not been previously reported and was a missing piece in the A2+Mn4+O3 series. We succeeded in synthesizing this compound by a high-pressure method and confirmed that it is crystallized in a distorted perovskite structure with a Cd2+Mn4+O3 charge configuration. The obtained insulating CdMnO3 exhibits an antiferromagnetic transition at about 86 K. First-principles calculations revealed that the Mn4+ (t2g3) spins form a C-type antiferromagnetic structure, which is in sharp contrast to the G-type antiferromagnetism in the isostructural and isoelectronic CaMnO3. Significant overlap of the Mn-3d and O(2)-2p orbitals produces distorted octahedra with a large Mn-O(1)-Mn tilt and induces antiferromagnetic couplings in the ac plane and the ferromagnetic couplings along the b axis.

2.
Inorg Chem ; 61(48): 19058-19066, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36414026

ABSTRACT

We report the successful growth of high-quality single crystals of Sr0.94Mn0.86Te1.14O6 (SMTO) using a self-flux method. The structural, electronic, and magnetic properties of SMTO are investigated by neutron powder diffraction (NPD), single-crystal X-ray diffraction (SCXRD), thermodynamic, and nuclear magnetic resonance techniques in conjunction with density functional theory calculations. NPD unambiguously determined octahedral (trigonal antiprismatic) coordination for all cations with the chiral space group P312 (no. 149), which is further confirmed by SCXRD data. The Mn and Te elements occupy distinct Wyckoff sites, and minor anti-site defects were observed in both sites. X-ray photoelectron spectroscopy reveals the existence of mixed valence states of Mn in SMTO. The magnetic susceptibility and specific heat data evidence a weak antiferromagnetic order at TN = 6.6 K. The estimated Curie-Weiss temperature θCW = -21 K indicates antiferromagnetic interaction between Mn ions. Furthermore, both the magnetic entropy and the 125Te nuclear spin-lattice relaxation rate showcase that short-range spin correlations persist well above the Néel temperature. Our work demonstrates that Sr0.94(2)Mn0.86(3)Te1.14(3)O6 single crystals realize a noncentrosymmetric triangular antiferromagnet.

3.
RSC Adv ; 12(37): 24427-24438, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36128544

ABSTRACT

Catalysts for the oxygen evolution reaction (OER) are receiving great interest since OER remains the bottleneck of water electrolyzers for hydrogen production. Especially, OER in acidic solutions is crucial since it produces high current densities and avoids precipitation of carbonates. However, even the acid stable iridates undergo severe dissolution during the OER. BaIrO3 has the strongest IrO6 connectivity and stable surface structure, yet it suffers from lattice collapse after OER cycling, making it difficult to improve the OER durability. In the present study, we have successfully developed an OER catalyst with both high intrinsic activity and stability under acidic conditions by preventing the lattice collapse after repeated OER cycling. Specifically, we find that the substitution of Ir-site with Mn for BaIrO3 in combination with OER cycling leads to a remarkable activity enhancement by a factor of 28 and an overall improvement in stability. This dual enhancement of OER performance was accomplished by the novel strategy of slightly increasing the Ir-dissolution and balancing the elemental dissolution in BaIr1-x Mn x O3 to reconstruct a rigid surface with BaIrO3-type structure. More importantly, the mass activity for BaIr0.8Mn0.2O3 reached ∼73 times of that for IrO2, making it a sustainable and promising OER catalyst for energy conversion technologies.

4.
Sci Rep ; 12(1): 14343, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35995852

ABSTRACT

Definitive understanding of superconductivity and its interplay with structural symmetry in the hole-doped lanthanum cuprates remains elusive. The suppression of superconductivity around 1/8th doping maintains particular focus, often attributed to charge-density waves (CDWs) ordering in the low-temperature tetragonal (LTT) phase. Central to many investigations into this interplay is the thesis that La1.875Ba0.125CuO4 and particularly La1.675Eu0.2Sr0.125CuO4 present model systems of purely LTT structure at low temperature. However, combining single-crystal and high-resolution powder X-ray diffraction, we find these to exhibit significant, intrinsic coexistence of LTT and low-temperature orthorhombic domains, typically associated with superconductivity, even at 10 K. Our two-phase models reveal substantially greater tilting of CuO6 octahedra in the LTT phase, markedly buckling the CuO2 planes. This would couple significantly to band narrowing, potentially indicating a picture of electronically driven phase segregation, reminiscent of optimally doped manganites. These results call for reassessment of many experiments seeking to elucidate structural and electronic interplay at 1/8 doping.

5.
Nat Commun ; 12(1): 6319, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34732739

ABSTRACT

The phase diagrams of LaMnO3 perovskites have been intensely studied due to the colossal magnetoresistance (CMR) exhibited by compositions around the [Formula: see text] doping level. However, phase segregation between ferromagnetic (FM) metallic and antiferromagnetic (AFM) insulating states, which itself is believed to be responsible for the colossal change in resistance under applied magnetic field, has prevented an atomistic-level understanding of the orbital ordered (OO) state at this doping level. Here, through the detailed crystallographic analysis of the phase diagram of a prototype system (AMn[Formula: see text]Mn[Formula: see text]O12), we show that the superposition of two distinct lattice modes gives rise to a striping of OO Jahn-Teller active Mn3+ and charge disordered (CD) Mn3.5+ layers in a 1:3 ratio. This superposition only gives a cancellation of the Jahn-Teller-like displacements at the critical doping level. This striping of CD Mn3.5+ with Mn3+ provides a natural mechanism though which long range OO can melt, giving way to a conducting state.

6.
RSC Adv ; 11(46): 28551-28556, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-35478579

ABSTRACT

Enzyme-linked immunosorbent assays (ELISAs) are tests that uses antibody recognition and enzyme catalytic activity to identify a substance, and they have been widely used as a diagnostic tool in the clinic. However, performing an ELISA requires various liquid handling steps and long binding times. To solve this problem, we developed a magnetic microfluidic ELISA system (MMF-ELISA). Integration with nickel magnetic nanoparticles can streamline the ELISA process in a fully automated manner for Streptococcus pneumoniae detection. First, we synthesized paramagnetic surface-oxidized nickel nanoparticles (Ni/NiO NPs) to carry protein G. Then, we assembled a SUM290 (UlaG)-specific antibody on protein G. Finally, we integrated the NPs on a microfluidics chip for S. pneumoniae detection. The chip contains three different layers to trap the solutions; the bottom layer SiO2 is patterned on hydrophobic polymers and integrated with the middle layer PDMS and the top layer PMMA. With Arduino and motor IC, we developed an automated platform for S. pneumoniae detection. Microfluidic ELISAs can reduce the manual handling and operation time. Furthermore, the developed system can be extended to multiple areas for ELISA-related assays. This economical, rapid and portable system may become a promising platform for sensing S. pneumoniae in clinical applications.

7.
Phys Rev Lett ; 124(4): 047204, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058744

ABSTRACT

dc and ac magnetic susceptibility, magnetization, specific heat, and Raman scattering measurements are combined to probe low-lying spin excitations in α-Ru_{1-x}Ir_{x}Cl_{3} (x≈0.2), which realizes a disordered spin liquid. At intermediate energies (ℏω>3 meV), Raman spectroscopy evidences linearly ω-dependent Majorana-like excitations, obeying Fermi statistics. This points to robustness of a Kitaev paramagnetic state under spin vacancies. At low energies below 3 meV, we observe power-law dependences and quantum-critical-like scalings of the thermodynamic quantities, implying the presence of a weakly divergent low-energy density of states. This scaling phenomenology is interpreted in terms of the random hoppings of Majorana fermions. Our results demonstrate an emergent hierarchy of spin excitations in a diluted Kitaev honeycomb system subject to spin vacancies and bond randomness.

8.
RSC Adv ; 10(68): 41816-41820, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-35516559

ABSTRACT

Lithium-oxide-halide and lithium-hydroxide-halide antiperovskites were explored for potential electrolytes in all-solid Li-ion batteries. A single-phase sample of the Ruddlesden-Popper (RP) series of compounds, LiBr(Li2OHBr)2 with double antiperovskite Li2OHBr layers and rigid rock-salt type LiBr layers, was obtained. Li+-ion vacancies are introduced in the double antiperovskite Li2OHBr layers but not in the LiBr layers and induce two-dimensional Li-ion conduction with low activation energy by mediating Li-ion hopping. In contrast to the Br-containing RP phase, Cl-containing Li-oxide-halide and Li-hydroxide-halide RP phases cannot be crystallized due to the structural mismatch between the antiperovskite layers and rigid LiCl layers.

9.
Phys Rev Lett ; 122(16): 167202, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075021

ABSTRACT

We report on magnetization M(H), dc and ac magnetic susceptibility χ(T), specific heat C_{m}(T) and muon spin relaxation (µSR) measurements of the Kitaev honeycomb iridate Cu_{2}IrO_{3} with quenched disorder. In spite of the chemical disorders, we find no indication of spin glass down to 260 mK from the C_{m}(T) and µSR data. Furthermore, a persistent spin dynamics observed by the zero-field muon spin relaxation evidences an absence of static magnetism. The remarkable observation is a scaling relation of χ[H,T] and M[H,T] in H/T with the scaling exponent α=0.26-0.28, expected from bond randomness. However, C_{m}[H,T]/T disobeys the predicted universal scaling law, pointing towards the presence of additional low-lying excitations on the background of bond-disordered spin liquid. Our results signify a many-faceted impact of quenched disorder in a Kitaev spin system due to its peculiar bond character.

10.
J Phys Condens Matter ; 31(28): 285802, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-30939461

ABSTRACT

We report high-precision magnetization ([Formula: see text]), magnetic susceptibility ([Formula: see text]), specific heat (C p (T, H)) and 'zero-field' electrical resistivity, [Formula: see text], data taken on Gd2Te3 single crystal over wide ranges of temperature and magnetic field (H), with either [Formula: see text]-axis or [Formula: see text]-plane. [Formula: see text] and [Formula: see text] unambiguously establish that the b-axis is the easy direction of magnetization whereas any direction in the ac-plane is a hard direction. The [Formula: see text]-type anomaly in 'zero-field' specific heat, C p (T, H = 0), and an abrupt drop in [Formula: see text] (characteristic of the paramagnetic (PM) - antiferromagnetic (AFM) phase transition) are observed at the Néel temperature, [Formula: see text] K. [Formula: see text] and C p (T,H) clearly demonstrate that [Formula: see text] shifts to lower temperatures with increasing H irrespective of whether H points in the easy or hard direction. When [Formula: see text], the [Formula: see text] isotherms at temperatures in the range 2.5 K [Formula: see text] [Formula: see text] K reveal the existence of a field-induced spin-flop (SF) transition at fields 4.0 T [Formula: see text] [Formula: see text] [Formula: see text] 4.5 T. The first principles electronic band structure and density of states calculations, based on the density functional theory, correctly predict an AFM ground state (stabilized primarily by the 4f  Gd3+ - 5p  Te2-- 4f  Gd3+ superexchange interactions) and the observed semi-metallic behavior for the Gd2Te3 compound. Moreover, these calculations yield the values [Formula: see text] [Formula: see text] for the ordered magnetic moment per Gd atom at T = 0, [Formula: see text] mJ mol-1 K-2 for the Sommerfeld coefficient for the electronic specific heat contribution and [Formula: see text] K for the Curie-Weiss temperature, respectively. These theoretical estimates conform well with the corresponding experimental values [Formula: see text] [Formula: see text], [Formula: see text] mJ mol-1 K-2 and [Formula: see text] K.

11.
Chem Commun (Camb) ; 55(20): 2984-2987, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30785134

ABSTRACT

We report the high pressure synthesis of a layered perovskite Ca2GeO4 which is found to have the Ruddlesden-Popper structure with I41/acd symmetry. Consonant with our recent predictions [Ablitt et al., npj Comput. Mater., 2017, 3, 44], the phase displays pronounced uniaxial negative thermal expansion over a large temperature range. Negative thermal expansion that persists over a large temperature range is very unusual in the perovskite structure, and its occurrence in this instance can be understood to arise due to both soft lattice vibrations associated with a phase competition and the unusually compliant nature of this structure, which effectively couples thermal expansion in the layer plane to lattice contractions perpendicular to the layering direction via a "corkscrew" mechanism.

12.
Inorg Chem ; 57(16): 10410-10415, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30067346

ABSTRACT

BaFe xNi1- xO3 with end members of BaNiO3 ( x = 0) and BaFeO3 ( x = 1), which, respectively, adopt the 2H and 6H hexagonal perovskite structures, were synthesized, and their crystal structures were investigated. A new single phase, Ba4Fe3NiO12 ( x = 0.75), that adopts the 12R perovskite structure with the space group R3̅ m ( a = 5.66564(7) Å and c = 27.8416(3) Å), was found to be stabilized. Mössbauer spectroscopy results and structure analysis using synchrotron and neutron powder diffraction data revealed that nominal Fe3+ occupies the corner-sharing octahedral site while the unusually high valence Fe4+ and Ni4+ occupy the face-sharing octahedral sites in the trimers, giving a charge formula of Ba4Fe3+Fe4+2Ni4+O11.5. The magnetic properties of the compound are also discussed.

13.
Inorg Chem ; 57(2): 843-848, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29278498

ABSTRACT

A Sr analogue of Ca0.5Bi0.5FeO3, Sr0.5Bi0.5FeO3, containing unusually high valence Fe3.5+ ions was synthesized by using a high-pressure technique. It relieves the electronic instability due to the unusually high valence of Fe3.5+ by a single charge disproportionation (CD) transition (Fe3.5+ → 0.75Fe3+ + 0.25Fe5+) rather than the successive CD and intermetallic charge transfer (CT) transitions seen in Ca0.5Bi0.5FeO3. Conduction-band narrowing due to the significant bend in the Fe-O-Fe bond in the rhombohedral R3̅c crystal structure stabilized the charge-disproportionated state at low temperatures. Most importantly, Bi3+ ions in Sr0.5Bi0.5FeO3 do not act as countercations accepting oxygen holes as they do in Ca0.5Bi0.5FeO3, resulting in the absence of the intermetallic CT transition. The large cavity of the A-site Sr ions prevents the charge-transferred Bi5+ from being stabilized. In the charge-disproportionated state the nearest-neighbor Fe3+ spins align antiferromagnetically and one-fourth of the Fe3+ spins are randomly replaced by Fe5+ spins coupled ferromagnetically with the neighboring Fe3+ spins.

14.
Adv Sci (Weinh) ; 4(10): 1700176, 2017 10.
Article in English | MEDLINE | ID: mdl-29051858

ABSTRACT

The oxygen evolution reaction (OER) plays a key role in emerging energy conversion technologies such as rechargeable metal-air batteries, and direct solar water splitting. Herein, a remarkably low overpotential of ≈150 mV at 10 mA cm-2disk in alkaline solutions using one of the non-Fermi liquids, Hg2Ru2O7, is reported. Hg2Ru2O7 displays a rapid increase in current density and excellent durability as an OER catalyst. This outstanding catalytic performance is realized through the coexistence of localized d-bands with the metallic state that is unique to non-Fermi liquids. The findings indicate that non-Fermi liquids could greatly improve the design of highly active OER catalysts.

15.
J Phys Condens Matter ; 29(14): 145801, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28248641

ABSTRACT

Using magnetization, dielectric constant, and neutron diffraction measurements on a high quality single crystal of YBaCuFeO5 (YBCFO), we demonstrate that the crystal shows two antiferromagnetic transitions at [Formula: see text] K and [Formula: see text] K, and displays a giant dielectric constant with a characteristic of the dielectric relaxation at T N2. It does not show the evidence of the electric polarization for the crystal used for this study. The transition at T N1 corresponds with a paramagnetic to antiferromagnetic transition with a magnetic propagation vector doubling the unit cell along three crystallographic axes. Upon cooling, at T N2, the commensurate spin ordering transforms to a spiral magnetic structure with a propagation vector of ([Formula: see text] [Formula: see text] [Formula: see text]), where [Formula: see text], [Formula: see text], and [Formula: see text] are odd, and the incommensurability δ is temperature dependent. Around the transition boundary at T N2, both commensurate and incommensurate spin ordering coexist.

16.
Nat Commun ; 5: 3909, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24849185

ABSTRACT

Strong correlation between spins and conduction electrons is key in spintronic materials and devices. A few ferro- or ferrimagnetic transition metal oxides such as La1-(x)Sr(x)MnO3, Fe3O4, CrO2 and Sr2FeMoO6 have spin-polarized conduction electrons at room temperature, but it is difficult to find other spin-polarized oxides with high Curie temperatures (well above room temperature) and large magnetizations for spintronics applications. Here we show that an A- and B-site-ordered quadruple perovskite oxide, CaCu3Fe2Re2O12, has spin-polarized conduction electrons and is ferrimagnetic up to 560 K. The couplings between the three magnetic cations lead to the high Curie temperature, a large saturation magnetization of 8.7 µB and a half-metallic electronic structure, in which only minority-spin bands cross the Fermi level, producing highly spin-polarized conduction electrons. Spin polarization is confirmed by an observed low-field magnetoresistance effect in a polycrystalline sample. Optimization of CaCu3Fe2Re2O12 and related quadruple perovskite phases is expected to produce a new family of useful spintronic materials.

17.
Inorg Chem ; 52(22): 13269-77, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24180301

ABSTRACT

Ultra-high-resolution neutron diffraction studies of BiFe(0.8)Co(0.2)O3 show a transition from a cycloidal space modulated spin structure at T = 10 K to a collinear G-type antiferromagnetic structure at T = 120 K. The model of antiparallel directions of Fe(3+) and Co(3+) magnetic moments at the shared Wyckoff position describes well the observed neutron diffraction intensities. On heating above RT, the crystal structure of BiFe(0.8)Co(0.2)O3 changes from a rhombohedral R3c to a monoclinic Cm. At 573 K only the Cm phase is present. The collinear C-type antiferromagnetic structure is present in the Cm phase of BiFe(0.8)Co(0.2)O3 at RT after annealing.

18.
Inorg Chem ; 52(18): 10610-4, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23978188

ABSTRACT

Solid solutions of Pauli-paramagnetic CaCu3V4O12 and antiferromagnetic CaMn3V4O12 were prepared by a high-pressure synthesis technique. All samples crystallized in the A-site-ordered perovskite structure with isovalent Cu(2+) and Mn(2+) ions at the square-planar A' site. The V ion at the B site kept a charge state close to +4 in all of the solid solutions, and the electrons of V were delocalized and contributed to the metallic properties. The substitution of Mn(2+) for Cu(2+) in CaCu3V4O12, where both Cu and V electrons were delocalized, produced the S = 5/2 localized moments, and the spins at the Mn site interacted antiferromagnetically. Spin-glass-like magnetic behaviors due to the random distribution of Cu/Mn ions at the A' site were observed at intermediate compositions of the solid solution, whereas the antiferromagnetic transition was observed at the end composition CaMn3V4O12.

19.
Dalton Trans ; 42(28): 10116-20, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23567543

ABSTRACT

A novel A- and B-site-ordered quadruple perovskite CaCu3Fe2Sb2O12 was obtained and it shows ferrimagnetism below about 170 K. The B-site Fe spin sublattice adapts a tetrahedral framework in a cubic structure and the Fe(3+)-Fe(3+) antiferromagnetic interaction can result in a geometrical spin frustration as seen in a simple perovskite Ca2FeSbO6. With the introduction of Cu(2+) into the A' site, the antiferromagnetic spin frustration is relieved by the strong Cu(2+)-Fe(3+) interaction, and a ferrimagnetic ordering appears at a much higher temperature than the spin-glass transition temperature.

20.
J Am Chem Soc ; 135(16): 6056-60, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23088383

ABSTRACT

A-site-ordered perovskite-structure oxides with Mn and V at A' and B sites, respectively, were synthesized by using a high-pressure method. Valence-state analyses revealed that the A-site substitution modulated the valence states of the Mn ions at the A' site and V ions at the B site sequentially. By changing the A-site ions from Na(+) to Ca(2+) and from Ca(2+) to La(3+), the valence distribution changed site-selectively from Na(+)Mn(2.33+)3V(4+)4O12 to Ca(2+)Mn(2+)3V(4+)4O12 and to La(3+)Mn(2+)3V(3.75+)4O12. The electrons of the A'-site Mn were localized and contributed to the magnetic properties, that is, spin-glass-like behavior in NaMn3V4O12 and antiferromagnetic behavior in CaMn3V4O12 and LaMn3V4O12. The valence electrons of the B-site V, in contrast, were delocalized, as could be seen from the low resistivity of the samples. The delocalized electrons at the B-site V did not correlate with the localized spins at the A'-site Mn.

SELECTION OF CITATIONS
SEARCH DETAIL
...