Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(25): 32425-32433, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865279

ABSTRACT

The application potential of ferroelectric thin films largely relies on the controllability of their domain structure. Among the various proposed strategies, mechanical switching is being considered as a potential alternative to replace electrical switching for control of the domain structure of ferroelectric thin films via, e.g., the flexoelectric effect. So far, studies on mechanical switching are confined to out-of-plane polarization switching in ferroelectric thin films, which are in pristine or prepoled single-domain states. In this work, we report reversible in-plane mechanical switching of the monoclinic phase (MC phase) stripe domains in BiFeO3 thin films can be realized by scanning tip force. Via controlling the fast scan direction of the scanning probe microscopy tip and the magnitude of the tip force, the effective trailing field induced by the local tip force can be rotated to consequently switch the net in-plane polarization of the two-variant stripe domain patterns by either 90° or 180°. Moreover, the monoclinic to rhombohedral (MC-R) phase transition occurs during mechanical switching with the distribution of R-phase domains dependent on the switching paths. These results extend our current understanding of the mechanical switching behavior in ferroelectric thin films and should be instructive for their future applications.

2.
Nano Lett ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825790

ABSTRACT

The core task of neuromorphic devices is to effectively simulate the behavior of neurons and synapses. Based on the functionality of ferroelectric domains with the advantages of low power consumption and high-speed response, great progress has been made in realizing neuromimetic behaviors such as ferroelectric synaptic devices. However, the correlation between the ferroelectric domain dynamics and neuromimetic behavior remains unclear. Here, we reveal the correlation between domain/domain wall dynamics and neuromimetic behaviors from a microscopic perspective in real-time by using high temporal and spatial resolution in situ transmission electron microscopy. Furthermore, we propose utilizing ferroelectric microstructures for the simultaneous simulation of neuronal and synaptic plasticity, which is expected to improve the integration and performance of ferroelectric neuromorphic devices. We believe that this work to study neuromimetic behavior from the perspective of domain dynamics is instructive for the development of ferroelectric neuromorphic devices.

3.
ACS Appl Mater Interfaces ; 16(26): 34358-34366, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913838

ABSTRACT

Work function of organometallic halide perovskite (OHP) films is one of the most crucial photoelectric properties, which dominates the carrier dynamics in OHP-based devices. Despite surface treatments by additives being widely used to promote crystallization and passivate defects in OHP films, these chemical strategies for modulation of work functions face two trade-offs: homogeneity on the surface versus along the thickness; the range versus the accuracy of modulation. Herein, by using ferroelectric substrates of uniform polarization and subnanometer roughness, homogeneous CH3NH3PbI3 films are fabricated with five states of work functions with large spanning (∼0.8 eV) and high precision (sd ∼ 0.01 eV). We reveal that the ferroelectric polarizations and the smooth surfaces regulate CH3NH3+ orientations and suppress distortions of PbI6 octahedrons. The wide-range and multistate work functions originate from the ordered CH3NH3+ orientations and PbI6 octahedrons, which result in intensity enhancements and wavelength shifts in photoluminescence with a 30-fold increase of photoexcited carrier lifetime.

4.
Soft Matter ; 20(12): 2789-2803, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38445957

ABSTRACT

This article combines the lattice Boltzmann method (LBM) with the squirmer model to investigate the motion of micro-swimmers in a channel-cavity system. The study analyses various influential factors, including the value of the squirmer-type factor (ß), the swimming Reynolds number (Rep), the size of the cavity, initial position and particle size on the movement of micro-swimmers within the channel-cavity system. We simultaneously studied three types of squirmer models, Puller (ß > 0), Pusher (ß < 0), and Neutral (ß = 0) swimmers. The findings reveal that the motion of micro-swimmers is determined by the value of ß and Rep, which can be classified into six distinct motion modes. For Puller and Pusher, when the ß value is constant, an increase in Rep will lead to transition in the motion mode. Moreover, the appropriate depth of cavity within the channel-cavity system plays a crucial role in capturing and separating Neutral swimmers. This study, for the first time, explores the effect of complex channel-cavity systems on the behaviour of micro-swimmers and highlights their separation and capture ability. These findings offer novel insights for the design and enhancement of micro-channel structures in achieving efficient separation and capture of micro-swimmers.

5.
Org Biomol Chem ; 22(1): 85-89, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38047328

ABSTRACT

Murepavadin (POL7080) in phase III clinical trials, a backbone-cyclized polypeptide composed of 14 amino acids, has a novel mode of action and shows a specific and efficient bactericidal effect against multidrug-resistant Pseudomonas aeruginosa. It is a potential candidate to treat severe P. aeruginosa infections in the future and still has significant commercial value for further research and development. In this paper, we report a liquid-phase peptide synthetic route for this valuable candidate polypeptide assisted by hydrophobic-support materials (tags), which overcomes the difficulties of high cost and poor yield in the traditional solid-phase synthesis of macrocyclic peptides. Through the careful optimization of reaction conditions and the innovative strategy of synthetic post-treatment, we established a simple and efficient liquid-phase synthetic route suitable for POL7080 and other similar structures, with satisfactory yield, high purity and a production process not being controlled by scale.


Subject(s)
Peptides, Cyclic , Peptides , Anti-Bacterial Agents/pharmacology , Peptides/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Pseudomonas aeruginosa , Solid-Phase Synthesis Techniques , Clinical Trials, Phase III as Topic
6.
Front Optoelectron ; 16(1): 48, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38157127

ABSTRACT

In this paper, we develop an efficient and accurate procedure of electromagnetic multipole decomposition by using the Lebedev and Gaussian quadrature methods to perform the numerical integration. Firstly, we briefly review the principles of multipole decomposition, highlighting two numerical projection methods including surface and volume integration. Secondly, we discuss the Lebedev and Gaussian quadrature methods, provide a detailed recipe to select the quadrature points and the corresponding weighting factor, and illustrate the integration accuracy and numerical efficiency (that is, with very few sampling points) using a unit sphere surface and regular tetrahedron. In the demonstrations of an isotropic dielectric nanosphere, a symmetric scatterer, and an anisotropic nanosphere, we perform multipole decomposition and validate our numerical projection procedure. The obtained results from our procedure are all consistent with those from Mie theory, symmetry constraints, and finite element simulations.

7.
Phys Rev Lett ; 130(26): 266303, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37450831

ABSTRACT

Exceptional point (EP) has been captivated as a concept of interpreting eigenvalue degeneracy and eigenstate exchange in non-Hermitian physics. The chirality in the vicinity of EP is intrinsically preserved and usually immune to external bias or perturbation, resulting in the robustness of asymmetric backscattering and directional emission in classical wave fields. Despite recent progress in non-Hermitian thermal diffusion, all state-of-the-art approaches fail to exhibit chiral states or directional robustness in heat transport. Here we report the first discovery of chiral heat transport, which is manifested only in the vicinity of EP but suppressed at the EP of a thermal system. The chiral heat transport demonstrates significant robustness against drastically varying advections and thermal perturbations imposed. Our results reveal the chirality in heat transport process and provide a novel strategy for manipulating mass, charge, and diffusive light.


Subject(s)
Hot Temperature , Physics , Diffusion
8.
Sci Adv ; 9(27): eadi0562, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37406112

ABSTRACT

Loss and noise are usually undesirable in electronics and optics, which are generally mitigated by separate ways in the cost of bulkiness and complexity. Recent studies of non-Hermitian systems have shown a positive role of loss in various loss-induced counterintuitive phenomena, while noise still remains a fundamental challenge in non-Hermitian systems particularly for sensing and lasing. Here, we simultaneously reverse the detrimental loss and noise and reveal their coordinated positive role in nonlinear non-Hermitian resonators. This synergetic effect leads to the amplified spectrum intensity with suppressed spectrum fluctuations after adding both loss and noise. We reveal the underlying mechanism of nonlinearity-induced bistability engineered by loss in the non-Hermitian resonators and noise-loss enhanced coherence of eigenfrequency hopping driven by temporal modulation of detuning. Our findings enrich counterintuitive non-Hermitian physics and lead to a general recipe to overcome loss and noise from electronics to photonics with applications from sensing to communication.

9.
Nat Nanotechnol ; 18(7): 706-720, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37386141

ABSTRACT

Exceptional points (EPs) arising in non-Hermitian systems have led to a variety of intriguing wave phenomena, and have been attracting increased interest in various physical platforms. In this Review, we highlight the latest fundamental advances in the context of EPs in various nanoscale systems, and overview the theoretical progress related to EPs, including higher-order EPs, bulk Fermi arcs and Weyl exceptional rings. We peek into EP-associated emerging technologies, in particular focusing on the influence of noise for sensing near EPs, improving the efficiency in asymmetric transmission based on EPs, optical isolators in nonlinear EP systems and novel concepts to implement EPs in topological photonics. We also discuss the constraints and limitations of the applications relying on EPs, and offer parting thoughts about promising ways to tackle them for advanced nanophotonic applications.

10.
J Med Chem ; 66(13): 8441-8463, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37310919

ABSTRACT

Quorum sensing inhibitors (QSIs) are a class of compounds that can reduce the pathogenicity of bacteria without affecting bacterial growth. In this study, we designed and synthesized four series of 4-fluorophenyl-5-methylene-2(5H)-furanone derivatives and evaluated their QSI activities. Among them, compound 23e not only showed excellent inhibitory activity against various virulence factors but also significantly enhanced the inhibitory activity of antibiotics ciprofloxacin and clarithromycin against two strains of Pseudomonas aeruginosa in vitro. What is even more exciting is that it remarkably increased the antibacterial effect in vivo in combination with ciprofloxacin in the bacteremia model infected with P. aeruginosa PAO1. Moreover, 23e had little hemolytic activity to mouse erythrocytes. Further, the results of GFP reporter fluorescence strain inhibition and ß-galactosidase activity inhibition experiments demonstrated that 23e simultaneously targeted the three quorum sensing systems in P. aeruginosa. As a result, compound 23e could be used as an effective QSI for further development against bacterial infections.


Subject(s)
Furans , Quorum Sensing , Animals , Mice , Furans/pharmacology , Furans/therapeutic use , Anti-Bacterial Agents/pharmacology , Virulence Factors , Ciprofloxacin/pharmacology , Pseudomonas aeruginosa , Biofilms
11.
Nat Mater ; 22(9): 1065-1070, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37081172

ABSTRACT

Circularly polarized light sources with free-space directional emission play a key role in chiroptics1, spintronics2, valleytronics3 and asymmetric photocatalysis4. However, conventional approaches fail to simultaneously realize pure circular polarization, high directionality and large emission angles in a compact emitter. Metal-halide perovskite semiconductors are promising light emitters5-8, but the absence of an intrinsic spin-locking mechanism results in poor emission chirality. Further, device integration has undermined the efficiency and directionality of perovskite chiral emitters. Here we realize compact spin-valley-locked perovskite emitting metasurfaces where spin-dependent geometric phases are imparted into bound states in the continuum via Brillouin zone folding, and thus, photons with different spins are selectively addressed to opposite valleys. Employing this approach, chiral purity of 0.91 and emission angle of 41.0° are simultaneously achieved, with a beam divergence angle of 1.6°. With this approach, we envisage the realization of chiral light-emitting diodes, as well as the on-chip generation of entangled photon pairs.

12.
ACS Appl Mater Interfaces ; 15(9): 11983-11993, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36808955

ABSTRACT

BiFeO3, known as the "holy grail of all multiferroics", provides an appealing platform for exploration of multifield coupling physics and design of functional devices. Many fantastic properties of BiFeO3 are regulated by its ferroelastic domain structure. However, a facile programable control on the ferroelastic domain structure in BiFeO3 remains challenging and our understanding on the existing control strategies is also far from complete. This work reports a facile control of ferroelastic domain patterns in BiFeO3 thin films under area scanning poling by exploiting the tip bias as the control parameter. Combining scanning probe microscopy experiments and simulations, we found that BiFeO3 thin films with pristine 71° rhombohedral-phase stripe domains exhibit at least four switching pathways solely by controlling the scanning tip bias. As a result, one can readily write mesoscopic topological defects into the films without the necessity to change the tip motion. The correlation between conductance of the scanned region and the switching pathway is further investigated. Our results extend the current understanding on the domain switching kinetics and the coupled electronic transport properties in BiFeO3 thin films. The facile voltage control of ferroelastic domains should facilitate the development of configurable electronic and spintronic devices.

13.
Eur J Med Chem ; 249: 115148, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36709649

ABSTRACT

A series of novel benzo[h]chromene compounds were designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their ability to potentiate the effect of antibiotics. Compounds with antibiotic-potentiating effects were then evaluated for inhibition of Nile Red efflux, and for off-target effects including activity on the outer and inner bacterial membranes and toxicity. Six compounds were identified to reduce the MIC values of at least one of the tested antibiotics by at least 4-fold, and further reduced the MICs in the presence of a membrane permeabilizer. The identified compounds were also able to inhibit Nile Red efflux at concentrations between 50 µM and 200 µM. The compounds did not disrupt the bacterial outer membrane nor display toxicity in a nematode model (Caenorhabditis elegans). The 4-methoxyphenoxy)propoxy derivative compound G6 possessed the most potent antibacterial potentiation with erythromycin by 8-fold even without the presence of a membrane permeabilizer. Furthermore, H6, G6, G10 and G11 completely abolished the Nile Red efflux at a concentration of 50 µM. The 3,4-dihydro-2H-benzo[h]chromen-5-yl)(morpholino)methanone core appears to be a promising chemical skeleton to be further studied in the discovery of more putative AcrB inhibitors.


Subject(s)
Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Erythromycin/pharmacology , Drug Resistance, Multiple , Multidrug Resistance-Associated Proteins , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
14.
Nature ; 613(7944): 474-478, 2023 01.
Article in English | MEDLINE | ID: mdl-36653568

ABSTRACT

Photons with spin angular momentum possess intrinsic chirality, which underpins many phenomena including nonlinear optics1, quantum optics2, topological photonics3 and chiroptics4. Intrinsic chirality is weak in natural materials, and recent theoretical proposals5-7 aimed to enlarge circular dichroism by resonant metasurfaces supporting bound states in the continuum that enhance substantially chiral light-matter interactions. Those insightful works resort to three-dimensional sophisticated geometries, which are too challenging to be realized for optical frequencies8. Therefore, most of the experimental attempts9-11 showing strong circular dichroism rely on false/extrinsic chirality by using either oblique incidence9,10 or structural anisotropy11. Here we report on the experimental realization of true/intrinsic chiral response with resonant metasurfaces in which the engineered slant geometry breaks both in-plane and out-of-plane symmetries. Our result marks, to our knowledge, the first observation of intrinsic chiral bound states in the continuum with near-unity circular dichroism of 0.93 and a high quality factor exceeding 2,663 for visible frequencies. Our chiral metasurfaces may lead to a plethora of applications in chiral light sources and detectors, chiral sensing, valleytronics and asymmetric photocatalysis.

15.
Bioorg Chem ; 130: 106266, 2023 01.
Article in English | MEDLINE | ID: mdl-36399865

ABSTRACT

The antibiotic crisis is associated with the appearance of multidrug resistant (MDR) pathogens, which has caused severe bacterial infections and imposed a huge burden on modern society. Therefore, there is an urgent need to develop new antibacterial drugs with novel mechanism of action. Here we designed and synthesized three series of benzoxazolone, oxazolopyridinone and 3-(2-hydroxyphenyl)hydantoin derivatives and evaluated their activity as novel quorum sensing (QS) inhibitors. We found that benzoxazolone and oxazolopyridinone derivatives had promising QS inhibitory activity in the minimum inhibitory concentration, pyocyanin and rhamnolipid inhibition assays. In particular, A10 and B20 at 256 µg/mL not only suppressed pyocyanin production regulated by QS in P. aeruginosa PAO1 by 36.55% and 46.90%, respectively, but also showed the strongest rhamnolipid inhibitory activity with the IC50 values of 66.35 and 56.75 µg/mL, respectively. Further studies demonstrated that B20 at 64 µg/mL inhibited biofilm formation in P. aeruginosa PAO1 by 40%, and weakened its swarming motility. More importantly, the bacterial mortality of B20 combined with ciprofloxacin and clarithromycin against P. aeruginosa were 48.27% and 49.79%, respectively, while ciprofloxacin and clarithromycin had only 16.99% and 29.11% of bacterial mortality against P. aeruginosa when used alone. Mechanistic studies indicated that B20 directly inhibited the QS pathway based on the GFP reporter strain assay. Overall, this compound with oxazolopyridinone core could serve as an antibacterial lead of QS inhibitor for further evaluation of its drug-likeness.


Subject(s)
Anti-Bacterial Agents , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Ciprofloxacin , Clarithromycin , Pseudomonas aeruginosa , Pyocyanine/chemistry , Quorum Sensing/drug effects
16.
Phys Rev Lett ; 131(24): 246701, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38181138

ABSTRACT

While magnetic skyrmions are often modeled as rigid particles, both experiments and micromagnetic simulations indicate their easy-to-deform characteristic, especially when their motion is restricted by defects. Here we establish a theoretical framework for the dynamics of magnetic skyrmions by incorporating the degrees of freedom related to deformation and predict well the current-driven dynamics of deformable skyrmions in the presence of line defects without any parameter fitting, where classical theories based on rigid-particle assumption deviate significantly. Further, we define an emergent property of magnetic skyrmions-flexibility and show that this property strongly modulates the depinning dynamics of skyrmions along a line defect with breaches. Our work explores the emergent mechanics of magnetic skyrmions and extends the current understanding on the dynamics of skyrmions interacted with defects.

17.
Nano Lett ; 22(22): 9013-9019, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36326581

ABSTRACT

The spin-orbit interaction of light is a fundamental manifestation of controlling its angular momenta with numerous applications in photonic spin Hall effects and chiral quantum optics. However, observation of an optical spin Hall effect, which is normally very weak with subwavelength displacements, needs quantum weak measurements or sophisticated metasurfaces. Here, we theoretically and experimentally demonstrate the spin-orbit interaction of light in the form of strong chiroptical responses by breaking the in-plane inversion symmetry of a dielectric substrate. The chiroptical signal is observed at the boundary of a microdisk illuminated by circularly polarized vortex beams at normal incidence. The generated chiroptical spectra are tunable for different photonic orbital angular momenta and microdisk diameters. Our findings, correlating photonic spin-orbit interaction with chiroptical responses, may provide a route for exploiting optical information processing, enantioselective sensing, and chiral metrology.

18.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234161

ABSTRACT

As one of the key safety components in motor vehicles, the steel wheel rim is commonly fabricated with the roll forming process. However, due to the varied cross-sections of the rim and the low formability of high-strength steel, it is difficult to produce thin-wall and defect-free wheel rims to realize the purpose of light weight. To solve these problems, a novel hydroforming process by combining internal and external pressures (HIEP) was proposed to produce thin-wall wheel rims in the current study. The designed initial tube with diameter between the maximum and minimum diameter of the wheel rim ensures dispersed deformation and effectively avoids local excessive thinning. During HIEP, a hydroforming process was performed with two successive stages: the external pressure and internal pressure stages. Theoretical analysis and finite element method (FEM) were jointly used to investigate the effect of process parameters on the wrinkling and thinning. With the optimized parameters for internal and external pressure, the wrinkling of wheel rims is prevented under compressive state during the external pressure forming stage. Additionally, HIEP was experimentally carried out with high-strength steel rims of 650 MPa ultimate tensile strength (UTS). Finally, wheel rims with weight reduction of 13% were produced successfully, which shows a uniform thickness distribution with a local maximum thinning ratio of 11.4%.

19.
Phys Rev Lett ; 129(12): 127401, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179197

ABSTRACT

Dynamically encircling exceptional points (EPs) have unveiled intriguing chiral dynamics in photonics. However, the traditional approach based on an open manifold of Hamiltonian parameter space fails to explore trajectories that pass through an infinite boundary. Here, by mapping the full parameter space onto a closed manifold of the Riemann sphere, we introduce a framework to describe encircling-EP loops. We demonstrate that an encircling trajectory crossing the north vertex can realize near-unity asymmetric transmission. An efficient gain-free, broadband asymmetric polarization-locked device is realized by mapping the encircling path onto L-shaped silicon waveguides.

20.
Beilstein J Nanotechnol ; 13: 828-835, 2022.
Article in English | MEDLINE | ID: mdl-36105694

ABSTRACT

We investigate how the optical gain or loss (characterized by isotropic complex refractive indexes) influence the ideal Kerker scattering of exactly zero backward scattering. It was previously shown that, for non-magnetic homogeneous spheres with incident plane waves, either gain or loss prohibit ideal Kerker scattering, provided that only electric and magnetic multipoles of a specific order are present and contributions from other multipoles can all be made precisely zero. Here we reveal that, when two multipoles of a fixed order are perfectly matched in terms of both phase and magnitude, multipoles of at least the next two orders cannot possibly be tuned to be all precisely zero or even perfectly matched, and consequently cannot directly produce ideal Kerker scattering. Moreover, we further demonstrate that, when multipoles of different orders are simultaneously taken into consideration, loss or gain can serve as helpful rather than harmful contributing factors, for the elimination of backward scattering.

SELECTION OF CITATIONS
SEARCH DETAIL
...