Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 944
Filter
1.
Front Neurol ; 15: 1402003, 2024.
Article in English | MEDLINE | ID: mdl-38835999

ABSTRACT

Purpose: To investigate the value of dual-phase head-and-neck computed tomography angiography (CTA) in assessing advantages and risks associated with mechanical thrombectomy for stroke with a large ischemic region in the anterior circulation within 6 h of onset. Methods: We retrospectively analyzed the data of patients with acute occlusion of the internal carotid artery or middle cerebral artery-M1 segment. Baseline dual-phase CTA was performed for collateral grading using the 4-point visual collateral score (0, 0% filling; 1, >0% and ≤50% filling; 2, >50 and <100% filling; 3, 100% filling). The rates of modified Rankin score (MRS) ≤ 3 at 90 days, any intracranial hemorrhage (ICH) within 48 h, malignant cerebral edema within 24 h, and all-cause 90-day mortality were analyzed. Results: Among the 69 study patients, 15, 26, 17, and 11 patients had collateral grades of 0, 1, 2, and 3, respectively. At 90 days, the MRS was ≤3 in 0, 8.33, 29.41, and 36.36% of patients with grades 0, 1, 2, and 3, respectively. ICH incidence was 73.33, 57.69, 29.41, and 18.18% for grades 0, 1, 2, and 3, respectively, while the incidence of malignant brain edema was 100, 76.92, 35.29, and 0%, respectively. All-cause 90-day mortality was 53.33% for grade 0 and 30.77% for grade 1; no deaths occurred at grades 2 and 3. Conclusion: Collateral grading based on dual-phase CTA enables simple and rapid preoperative evaluation prior to mechanical thrombectomy for acute anterior-circulation stroke with a large ischemic focus, particularly for patients presenting within the 6-h time window.

2.
Front Microbiol ; 15: 1371208, 2024.
Article in English | MEDLINE | ID: mdl-38841054

ABSTRACT

Background: Desert steppe ecosystems are prone to drought stress, which influences the ecological balance and sustainable development of grasslands. In addition to directly restrict plant growth, drought stress indirectly impacts plant fitness by altering the diversity and function of root-associated microbiomes. This begs the question of whether the functional microbiome of forage plants, represented by synthetic microbial communities (SynComs), can be leveraged to mitigate drought stress in desert steppes and promote the ecological restoration of these fragile ecosystems. Methods: A pot experiment was conducted to evaluate the role of SynComs in improving the plant growth and drought stress resistance of Neopallasia pectinata (Pall.) Poljak in desert steppe in Inner Mongolia, China. Six SynComs were derived from the rhizosphere and root endosphere of 12 dominant forage species in the desert steppe. Each SynCom comprised two to three bacterial genera (Bacillus, Protomicromonospora, and Streptomyces). We examined the capacities of different SynComs for nutrient solubilization, phytohormone secretion, and enzymatic activity. Results: Under no water stress (75% soil water holding capacity, WHC), single strains performed better than SynComs in promoting plant growth in terms of stem diameter, root length, and plant dry weight, with the greatest effects observed for Streptomyces coeruleorubidus ATCC 13740 (p < 0.05). However, under mild to moderate drought stress (55% and 35% WHC), SynComs outperformed single strains in enhancing plant biomass accumulation and inducing the production of resistance-related substances (p < 0.05). No significant effect of single strains and SynComs emerged under extreme drought stress (20% WHC). Conclusion: This study underscores the potential of SynComs in facilitating forage plants to combat drought stress in desert steppe. Mild to moderate drought stress stimulates SynComs to benefit the growth of N. pectinata plants, despite a soil moisture threshold (21% WHC) exists for the microbial effect. The use of SynComs provides a promising strategy for the ecological restoration and sustainable utilization of desert steppes by manipulating the functional microbiome of forage plants.

3.
Ultrasonics ; 141: 107340, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38744113

ABSTRACT

In this paper we propose a novel ultrasonic longitudinal wave resonance method for measuring the thickness of metal walls using a laser-electromagnetic acoustic transducer (Laser-EMAT). The method is based on the surface constraint mechanism (SCM) of the material and is expected to be capable of accurately detecting local thinning of metal walls in a non-contact manner and at high temperatures. Based on finite element analysis of laser-EMAT ultrasonic resonance measurement of aluminum alloy thickness, we investigated the effects of such key factors as SCM, irradiation parameters of laser source, and the size of EMAT receiving coil on the accuracy of thickness measurement (resonance frequency position) and on the amplitude of the resonance wave. Both numerical simulations and experiments are conducted to demonstrate that the measurement accuracy of the proposed method is not affected by SCM, irradiation laser source parameters, and EMAT receiving coil size, and that accurate detection of stepped aluminum plates with thickness thinning from 3.0 mm to 0.5 mm is achieved. Furthermore, we were able to perform rapid detection of aluminum thin plate thickness at 500 °C temperature with an EMAT lift-off of 5.0 mm and achieved a relative experimental error as small as 3.40 %. The results obtained in this study showed that the proposed method performed well in non-contact measurement of metal thinning in harsh environment of high temperature.

4.
J Rheumatol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749557

ABSTRACT

OBJECTIVE: Although previous studies have explored the association of drinking with gout risk, the dose-response relationship was uncertain and the evidence between subtypes of alcoholic beverages and gout risk was limited. METHODS: The weekly alcoholic beverage consumption in the United Kingdom Biobank (UKB) was collected and calculated. The Cox regression model was applied to assess the impact of alcohol drinking and its subtypes on gout risk by calculating the hazard ratio (HR) and 95% confidence interval (CI). Besides, the restricted cubic splines were used to estimate the dose-response relationship between alcoholic drinking and gout risk. To evaluate the robustness, we performed subgroup analysis across various demographic characteristics. RESULTS: During a mean follow-up period of 11.70 years, a total of 5,728 newly incident gout cases were diagnosed among 331,865 participants. We found that light alcohol drinking was linked to a slight decrease in gout incidence among females (HR, 0.78; 95% CI, 0.65 to 0.94, P=0.01), whereas it showed no significant association in males. Moreover, the dose-response relationship showed that light red wine and fortified wine could reduce the gout risk, while beer, champagne plus white wine and spirits promoted the gout risk at any dose. CONCLUSION: Our study suggested a J-shaped dose-response relationship of drinking with gout risk in females rather than males. For specific alcoholic beverages, light consumption of red wine and fortified wine was associated with reduced gout risk. These findings offer new insights into the roles of alcoholic beverages in gout, while further validation is warranted.

5.
Anal Chim Acta ; 1309: 342698, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772661

ABSTRACT

BACKGROUND: The lateral flow immunoassay (LFIA) is widely employed as a point-of-care testing (POCT) technique. However, its limited sensitivity hinders its application in detecting biomarkers with low abundance. Recently, the utilization of nanozymes has been implemented to enhance the sensitivity of LFIA by catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The catalytic performance of nanozymes plays a crucial role in influencing the sensitivity of LFIA. RESULTS: The Cornus officinalis Sieb. et Zucc-Pd@Pt (CO-Pd@Pt) nanozyme with good peroxidase-like activity was synthesized herein through a facile one-pot method employing Cornus officinalis Sieb. et Zucc extract as a reducing agent. The morphology and composition of the CO-Pd@Pt nanozyme were characterized using TEM, SEM, XRD, and XPS. As a proof of concept, the as-synthesized CO-Pd@Pt nanozyme was utilized in LFIA (CO-Pd@Pt-LFIA) for the detection of human chorionic gonadotropin (hCG). Compared to conventional gold nanoparticles-based LFIA (AuNPs-LFIA), CO-Pd@Pt-LFIA demonstrated a significant enhancement in the limit of detection (LOD, 0.08 mIU/mL), which is approximately 160 times lower than that of AuNPs-LFIA. Furthermore, experiments evaluating accuracy, precision, selectivity, interference, and stability have confirmed the practical applicability of CO-Pd@Pt-LFIA for hCG content determination. SIGNIFICANCE: The present study presents a novel approach for the synthesis of bimetallic nanozymes through environmentally friendly methods, utilizing plant extracts as both protective and reducing agents. Additionally, an easily implementable technique is proposed to enhance signal detection in lateral flow immunoassays.


Subject(s)
Palladium , Platinum , Palladium/chemistry , Platinum/chemistry , Immunoassay/methods , Humans , Metal Nanoparticles/chemistry , Limit of Detection , Peroxidase/chemistry , Peroxidase/metabolism , Benzidines/chemistry , Catalysis , Oxidation-Reduction
6.
Acta Biomater ; 181: 391-401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704114

ABSTRACT

Potassium ion transport across myocardial cell membrane is essential for type 2 long QT syndrome (LQT2). However, the dysfunction of potassium ion transport due to genetic mutations limits the therapeutic effect in treating LQT2. Biomimetic ion channels that selectively and efficiently transport potassium ions across the cellular membranes are promising for the treatment of LQT2. To corroborate this, we synthesized a series of foldamer-based ion channels with different side chains, and found a biomimetic ion channel of K+ (BICK) with the highest transport activity among them. The selected BICK can restore potassium ion transport and increase transmembrane potassium ion current, thus shortening phase 3 of action potential (AP) repolarization and QT interval in LQT2. Moreover, BICK does not affect heart rate and cardiac rhythm in treating LQT2 model induced by E4031 in isolated heart as well as in guinea pigs. By restoring ion transmembrane transport tactic, biomimetic ion channels, such as BICK, will show great potential in treating diseases related to ion transport blockade. STATEMENT OF SIGNIFICANCE: Type 2 long QT syndrome (LQT2) is a disease caused by K+ transport disorder, which can cause malignant arrhythmia and even death. There is currently no radical cure, so it is critical to explore ways to improve K+ transmembrane transport. In this study, we report that a small-molecule biomimetic ion channel BICK can efficiently simulate natural K+ channel proteins on the cardiomyocyte and cure E4031-induced LQT2 in guinea pig by restoring K+ transport function for the first time. This study found that the potassium transmembrane transport by BICK significantly reduced the QT interval, which provides a conceptually new strategy for the treatment of LQT2 disease.


Subject(s)
Long QT Syndrome , Potassium , Long QT Syndrome/metabolism , Animals , Potassium/metabolism , Guinea Pigs , Humans , Action Potentials/drug effects , Ion Transport/drug effects , Male , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Heart Rate/drug effects
7.
ACS Nano ; 18(20): 13249-13265, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720584

ABSTRACT

The therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE via multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes in vivo, restrained CD4+T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4+T cells. In addition, Dexlip-MSCs initiated cellular reprogramming by activating the glucocorticoid receptor (GR) signaling pathway to upregulate the expression of anti-inflammatory factors such as cysteine-rich secretory protein LCCL-containing domain 2 (CRISPLD2) and downregulate the expression of proinflammatory factors. In addition, Dexlip-MSCs synergistically increased the anti-inflammatory inhibitory effect of CD4+T cells through the release of dexamethasone liposomes or Dex-integrated MSC-derived exosomes (Dex-MSC-EXOs). Based on these synergistic biological effects, we demonstrated that Dexlip-MSCs alleviated disease progression in MRL/lpr mice more effectively than Dexlip or MSCs alone. These features indicate that our stem cell delivery strategy is a promising therapeutic approach for clinical SLE treatment.


Subject(s)
Dexamethasone , Lupus Erythematosus, Systemic , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Dexamethasone/pharmacology , Dexamethasone/chemistry , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/immunology , Mice , Liposomes/chemistry , Mesenchymal Stem Cell Transplantation , Cell Proliferation/drug effects , Female , Mice, Inbred MRL lpr , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
8.
J Infect Public Health ; 17(7): 102455, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38820891

ABSTRACT

BACKGROUND: Interdigital tinea pedis is the most common type of foot infection, which is often treated by topical or systemic antifungals. Due to the increase in antifungal resistance, antifungal socks are becoming potential alternatives for the daily management of tinea pedis. METHODS: In this study, antifungal fibres were adopted to produce interdigital hygiene socks to split the third and fourth toe seams of the feet. In vitro antifungal activity was first examined to verify the effectiveness of the socks. Preventive efficacy against tinea pedis was then evaluated among healthy participants, followed by therapeutic effect detection in patients diagnosed with tinea pedis by analysing the improvement in total symptom scores (TTS). RESULTS: The interdigital-type hygiene socks exhibited apparent antifungal activities in vitro. An in vivo study demonstrated significant preventive effects against tinea pedis for interdigital socks compared to plain socks (P = 0.011) and a lower TTS than noninterdigital (P = 0.04) or plain socks (P < 0.0001). Moreover, interdigital socks showed a total effectiveness rate of 72.9% in patients with tinea pedis, with most of the symptoms alleviated. CONCLUSION: Interdigital-type hygiene socks not only exhibited in vitro antifungal activities but also showed significant prophylactic and therapeutic effects against interdigital tinea pedis in vivo.

9.
Clin Nutr ; 43(6): 1544-1550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754306

ABSTRACT

Few prospective studies have investigated the joint effect of lifestyle factors and genetic susceptibility on the risk of irritable bowel syndrome (IBS). This study aims to evaluate the associations of lifestyle and genetic factors with incident IBS in the UK Biobank. We analyzed data from 481,057 participants (54% female) without prevalent IBS at enrollment in the UK Biobank. An overall healthy lifestyle was defined using six modifiable lifestyle factors, including smoking, body mass index (BMI), sleep duration, diet, physical activity, and alcohol consumption, and hence categorized into 'favorable', 'intermediate', and 'unfavorable' lifestyles. A Cox proportional hazard model was used to investigate the association between a healthy lifestyle and incident IBS. Furthermore, we constructed a polygenic risk score (PRS) for IBS and assessed whether lifestyle modified the effect of genetics on the development of IBS. During a median follow-up of 12.1 years, 8645 incident IBS were ascertained. Specifically, among the six modifiable lifestyle factors, adequate sleep demonstrates the greatest protective effect (hazard ratio [HR]: 0.72, 95% CI: 0.69,0.75) against IBS. Compared with a favorable lifestyle, an unfavorable lifestyle was associated with a 56% (95% CI: 46%-67%) increased risk of IBS (P = 8.99 × 10-40). The risk of incident IBS was 12% (95% CI: 4%-21%) higher among those at high genetic risk compared with those at low genetic risk (P = 0.005). When considering the joint effect of lifestyle and genetic susceptibility, the HR nearly doubled among individuals with high genetic risk and unfavorable lifestyle (HR: 1.80; 95% CI:1.51-2.15; P = 3.50 × 10-11) compared to those with low genetic risk and favorable lifestyle. No multiplicative or addictive interaction was observed between lifestyle and genetics. The findings from this study indicated that lifestyle and genetic factors were independently associated with the risk of incident IBS. All these results implicated a possible clinical strategy of lowering the incidence of IBS by advocating a healthy lifestyle.


Subject(s)
Genetic Predisposition to Disease , Irritable Bowel Syndrome , Life Style , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/epidemiology , Female , Male , Prospective Studies , Middle Aged , Incidence , United Kingdom/epidemiology , Risk Factors , Adult , Proportional Hazards Models , Aged , Sleep/genetics , Healthy Lifestyle , Diet/statistics & numerical data
10.
Waste Manag ; 184: 28-36, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795538

ABSTRACT

Carbon fiber-reinforced polymer composites (CFRPs) have gained widespread usage due to their promising physiochemical properties, while this causes large amounts of waste CFRPs worldwide. In this study, carbon fibers were successfully recovered from waste CFRPs through the pyrolysis-oxidation method, and the recovered fibers were reused in remanufacturing the secondary generation CFRPs. Moreover, the individual and interactive effects of pyrolysis-oxidation recovering parameters on the mechanical strength of the resulting remanufactured CFRPs (reCFRPs) were investigated. The recovered carbon fibers displayed surface chemical structures similar to virgin fibers but with high contents of oxygen-containing bonds. The tensile strength retention (TSR) of the reCFRPs was primarily influenced by oxidation temperature. Notably, a higher oxidation temperature, especially exceeding 560 °C, amplified the impact of oxidation duration on the TSR value. Similarly, concerning interlaminar shear strength retention (ISSR), the oxidation stage had a more substantial effect compared to the pyrolysis stage. As the oxidation temperature increased from 500 °C to 600 °C, the ISSR value initially increased and then decreased, irrespective of variations in pyrolysis parameters. Additionally, through integrating the response surface methodology (RSM) analysis and multi-island genetic algorithm (MIGA) global optimization, three recovery strategies, along with the corresponding processing parameters, were proposed to meet diverse requirements. The conclusions could provide valuable insights for optimizing the recovery and reuse of carbon fibers from waste CFRPs.


Subject(s)
Carbon Fiber , Oxidation-Reduction , Pyrolysis , Recycling , Carbon Fiber/chemistry , Recycling/methods , Tensile Strength , Polymers/chemistry , Carbon/chemistry
11.
Anal Chem ; 96(22): 8886-8892, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771107

ABSTRACT

Illegal addition of drugs is common but seriously threatens public health safety. Conventional mass spectrometry methods are difficult to realize direct analysis of drugs existing in some complex matrices such as seawater or soil due to the ion suppression effect and contamination to MS parts caused by nonvolatile salts. In this work, a novel crystallization and solvent evaporation ionization mass spectrometry (CSEI-MS) method was constructed and developed to achieve rapid desalting detection. CSEI only consists of a heated plate and a nebulizer and exhibits excellent desalting performance, enabling direct analysis of six drugs dissolved in eight kinds of salt solutions (up to 200 mmol/L) and three complex salty matrices. Under optimized conditions, CSEI-MS presents high sensitivity, accuracy, linearity, and intraday and interday precision. Finally, this method is applied to the quantitative analysis of drugs in seawater, hand cream, and soil. Furthermore, the highly sensitive detection of CSEI-MS is demonstrated to remain even if the detection processes are conducted within 5 s via common commercial tools.


Subject(s)
Crystallization , Solvents , Solvents/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Seawater/chemistry , Seawater/analysis , Mass Spectrometry/methods , Volatilization , Soil/chemistry
12.
Materials (Basel) ; 17(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793300

ABSTRACT

SnPb solder was widely used in electronic packaging for aerospace devices due to its high reliability. However, its creep resistance is poor and can be improved by adding alloying elements. The effects of Sb content on the microstructure, tensile, and creep properties of eutectic SnPb solder were investigated. Sb addition effectively improved the mechanical properties of the SnPb solder. When Sb content exceeds 1.7 wt.%, SbSn intermetallic compounds (IMCs) occurred. And increasing the Sb content increased the tensile strength. Furthermore, Sb addition decreased the steady-state creep rate and increased the stress exponent n, suggesting that the creep resistance had been enhanced, which may be attributed to the hindrance of dislocation movement by SbSn IMCs, as well as the reduction in phase boundaries, which consequently reduced grain boundary sliding.

13.
Alpha Psychiatry ; 25(2): 124-131, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38798800

ABSTRACT

Background: Pathophysiological mechanisms and related biological markers for post-stroke depression (PSD) are unknown. Some studies have noted that C-reactive protein (CRP) is activated in the serum of PSD patients. We aim to quantitatively summarize the concentrations of CRP in PSD patients compared to non-PSD patients. Methods: Original studies evaluating the association between CRP and PSD were searched in 4 specific databases from the establishment of the databases to March 2023. RevMan 5.20 and Stata 11.0 statistical software were used for meta-analysis. Publication bias was tested by Egger's test. The CRP level were combined by standardized mean difference (SMD) with 95% confidence interval (CI). Results: A total of 43 relevant literatures were retrieved, while 13 cohort studies were collected. The heterogeneity test result of the level of CRP in patients with PSD vs. non-PSD was (Q = 98.38, P < .001, I2 = 88%). The combined value of the estimated effect was [SMD = 0.34, 95% CI (0.12-0.56); P = .003]. Sensitivity analysis indicated that no study had a remarkable influence on the result of the pooled estimate. Egger's test was used to test the bias and the result was (Egger's test, P = .548), suggesting that there was no publication bias, and the results were credible. We found that different depression evaluation criteria (P = .035) and stroke types (P = .024) were considered as influencing factors for potential sources of heterogeneity. Conclusion: In conclusion, compared to those without depressive symptoms, patients with post-stroke depression have higher concentrations of CRP in the blood.

14.
Front Pharmacol ; 15: 1345070, 2024.
Article in English | MEDLINE | ID: mdl-38799165

ABSTRACT

Background: Vandetanib is a small-molecule tyrosine kinase inhibitor. It exerts its therapeutic effects primarily in a range of lung cancers by inhibiting the vascular endothelial growth factor receptor 2. However, it remains unclear whether vandetanib has therapeutic benefits in other lung diseases, particularly asthma. The present study investigated the pioneering use of vandetanib in the treatment of asthma. Methods: In vivo experiments including establishment of an asthma model, measurement of airway resistance measurement and histological analysis were used primarily to confirm the anticontractile and anti-inflammatory effects of vandetanib, while in vitro experiments, including measurement of muscle tension and whole-cell patch-clamp recording, were used to explore the underlying molecular mechanism. Results: In vivo experiments in an asthmatic mouse model showed that vandetanib could significantly alleviate systemic inflammation and a range of airway pathological changes including hypersensitivity, hypersecretion and remodeling. Subsequent in vitro experiments showed that vandetanib was able to relax the precontracted rings of the mouse trachea via calcium mobilization which was regulated by specific ion channels including VDLCC, NSCC, NCX and K+ channels. Conclusions: Taken together, our study demonstrated that vandetanib has both anticontractile and anti-inflammatory properties in the treatment of asthma, which also suggests the feasibility of using vandetanib in the treatment of asthma by reducing abnormal airway contraction and systemic inflammation.

15.
Sci Rep ; 14(1): 8106, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582913

ABSTRACT

Wheat head detection and counting using deep learning techniques has gained considerable attention in precision agriculture applications such as wheat growth monitoring, yield estimation, and resource allocation. However, the accurate detection of small and dense wheat heads remains challenging due to the inherent variations in their size, orientation, appearance, aspect ratios, density, and the complexity of imaging conditions. To address these challenges, we propose a novel approach called the Oriented Feature Pyramid Network (OFPN) that focuses on detecting rotated wheat heads by utilizing oriented bounding boxes. In order to facilitate the development and evaluation of our proposed method, we introduce a novel dataset named the Rotated Global Wheat Head Dataset (RGWHD). This dataset is constructed by manually annotating images from the Global Wheat Head Detection (GWHD) dataset with oriented bounding boxes. Furthermore, we incorporate a Path-aggregation and Balanced Feature Pyramid Network into our architecture to effectively extract both semantic and positional information from the input images. This is achieved by leveraging feature fusion techniques at multiple scales, enhancing the detection capabilities for small wheat heads. To improve the localization and detection accuracy of dense and overlapping wheat heads, we employ the Soft-NMS algorithm to filter the proposed bounding boxes. Experimental results indicate the superior performance of the OFPN model, achieving a remarkable mean average precision of 85.77% in oriented wheat head detection, surpassing six other state-of-the-art models. Moreover, we observe a substantial improvement in the accuracy of wheat head counting, with an accuracy of 93.97%. This represents an increase of 3.12% compared to the Faster R-CNN method. Both qualitative and quantitative results demonstrate the effectiveness of the proposed OFPN model in accurately localizing and counting wheat heads within various challenging scenarios.


Subject(s)
Agriculture , Triticum , Algorithms , Pyramidal Tracts , Resource Allocation
16.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627624

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Subject(s)
Brassica rapa , Brassica , Infertility, Male , RNA, Long Noncoding , Male , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Brassica/genetics , Gene Expression Profiling/methods , Transcriptome , Fertility , Gene Expression Regulation, Plant , Plant Infertility/genetics
17.
Article in English | MEDLINE | ID: mdl-38652413

ABSTRACT

The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.

18.
Opt Express ; 32(7): 11886-11894, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571026

ABSTRACT

A polarization beam-splitting multimode filter using pixelated waveguides has been presented and experimentally demonstrated in this paper. Finite difference time domain method and direct binary search optimization algorithm are employed to optimize pixelated waveguides to realize compact size, broad bandwidth, large extinction ratio, low insertion loss, and good polarization extinction ratio. Measurement results show that, in a wavelength range from 1520 to 1560 nm, for the fabricated device working at transverse-electric polarization, the measured insertion loss is less than 1.23 dB and extinction ratio is larger than 15.14 dB, while for transverse-magnetic polarization, the corresponding insertion loss lower than 0.74 dB and extinction ratio greater than 15.50 dB are realized. The measured polarization extinction ratio larger than 15.02 dB is achieved. The device's length is only 15.4 µm.

19.
Nat Commun ; 15(1): 3588, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678013

ABSTRACT

Eye tracking techniques enable high-efficient, natural, and effortless human-machine interaction by detecting users' eye movements and decoding their attention and intentions. Here, a miniature, imperceptible, and biocompatible smart contact lens is proposed for in situ eye tracking and wireless eye-machine interaction. Employing the frequency encoding strategy, the chip-free and battery-free lens successes in detecting eye movement and closure. Using a time-sequential eye tracking algorithm, the lens has a great angular accuracy of <0.5°, which is even less than the vision range of central fovea. Multiple eye-machine interaction applications, such as eye-drawing, Gluttonous Snake game, web interaction, pan-tilt-zoom camera control, and robot vehicle control, are demonstrated on the eye movement model and in vivo rabbit. Furthermore, comprehensive biocompatibility tests are implemented, demonstrating low cytotoxicity and low eye irritation. Thus, the contact lens is expected to enrich approaches of eye tracking techniques and promote the development of human-machine interaction technology.


Subject(s)
Algorithms , Contact Lenses , Eye Movements , Eye-Tracking Technology , Eye Movements/physiology , Animals , Humans , Rabbits , Man-Machine Systems
20.
Front Immunol ; 15: 1367734, 2024.
Article in English | MEDLINE | ID: mdl-38680494

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by various ligands, including pollutants, microorganisms, and metabolic substances. It is expressed extensively in pulmonary and intestinal epithelial cells, where it contributes to barrier defense. The expression of AhR is pivotal in regulating the inflammatory response to microorganisms. However, dysregulated AhR expression can result in endocrine disorders, leading to immunotoxicity and potentially promoting the development of carcinoma. This review focuses on the crucial role of the AhR in facilitating and limiting the proliferation of pathogens, specifically in relation to the host cell type and the species of etiological agents involved in microbial pathogen infections. The activation of AhR is enhanced through the IDO1-AhR-IDO1 positive feedback loop, which is manipulated by viruses. AhR primarily promotes the infection of SARS-CoV-2 by inducing the expression of angiotensin-converting enzyme 2 (ACE2) and the secretion of pro-inflammatory cytokines. AhR also plays a significant role in regulating various types of T-cells, including CD4+ T cells and CD8+ T cells, in the context of pulmonary infections. The AhR pathway plays a crucial role in regulating immune responses within the respiratory and intestinal barriers when they are invaded by viruses, bacteria, parasites, and fungi. Additionally, we propose that targeting the agonist and antagonist of AhR signaling pathways could serve as a promising therapeutic approach for combating pathogen infections, especially in light of the growing prevalence of drug resistance to multiple antibiotics.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , COVID-19 , Inflammation , Receptors, Aryl Hydrocarbon , SARS-CoV-2 , Receptors, Aryl Hydrocarbon/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , COVID-19/immunology , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Animals , Signal Transduction , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...