Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(12): e81849, 2013.
Article in English | MEDLINE | ID: mdl-24312593

ABSTRACT

Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi) signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV) treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s) and Pi-signaling pathway related genes (e.g. OsPHO2) were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.


Subject(s)
Cold Temperature/adverse effects , Down-Regulation/genetics , Oryza/genetics , Oryza/physiology , Oxidative Stress/genetics , Plant Proteins/genetics , Seedlings/physiology , Gene Expression Profiling , Genomics , Oryza/drug effects , Oxidative Stress/drug effects , Paraquat/pharmacology , Plant Leaves/drug effects , Plant Leaves/physiology , Plants, Genetically Modified , Seedlings/drug effects
2.
J Mol Cell Cardiol ; 52(5): 1176-82, 2012 May.
Article in English | MEDLINE | ID: mdl-22326432

ABSTRACT

A nodal regulator of endoplasmic reticulum stress is the transcription factor, ATF6, which is activated by ischemia and protects the heart from ischemic damage, in vivo. To explore mechanisms of ATF6-mediated protection in the heart, a whole-genome microRNA (miRNA) array analysis of RNA from the hearts of ATF6 transgenic (TG) mice was performed. The array identified 13 ATF6-regulated miRNAs, eight of which were downregulated, suggesting that they could contribute to increasing levels of their mRNAs. The down-regulated miRNAs, including miR-455, were predicted to target 45 mRNAs that we had previously shown by microarray analysis to be up-regulated by ATF6 in the heart. One of the miR-455 targets was calreticulin (Calr), which is up-regulated in the pathologic heart, where it modulates hypertrophic growth, potentially reducing the impact of the pathology. To validate the effects of miR-455, we showed that Calr protein was increased by ATF6 in mouse hearts, in vivo. In cultured cardiac myocytes, treatment with the ER stressor, tunicamycin, or with adenovirus encoding activated ATF6 decreased miR-455 and increased Calr levels, consistent with the effects of ATF6 on miR-455 and Calr, in vivo. Moreover, transfection of cultured cardiac myocytes with a synthetic precursor, premiR-455, decreased Calr levels, while transfection with an antisense, antimiR-455, increased Calr levels. The results of this study suggest that ER stress can regulate gene expression via ATF6-mediated changes in micro-RNA levels. Moreover, these findings support the hypothesis that ATF6-mediated down-regulation of miR-455 augments Calr expression, which may contribute to the protective effects of ATF6 in the heart.


Subject(s)
Activating Transcription Factor 6/metabolism , Endoplasmic Reticulum Stress , MicroRNAs/genetics , Myocardium/metabolism , RNA Interference , Activating Transcription Factor 6/genetics , Animals , Calreticulin/genetics , Calreticulin/metabolism , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Gene Expression Profiling , Heat-Shock Proteins/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Transcription, Genetic , Up-Regulation
3.
Circ Res ; 106(2): 307-16, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19940266

ABSTRACT

RATIONALE: Stresses, such as ischemia, impair folding of nascent proteins in the rough endoplasmic reticulum (ER), activating the unfolded protein response, which restores efficient ER protein folding, thus leading to protection from stress. In part, the unfolded protein response alleviates ER stress and cell death by increasing the degradation of terminally misfolded ER proteins via ER-associated degradation (ERAD). ERAD is increased by the ER stress modulator, activating transcription factor (ATF)6, which can induce genes that encode components of the ERAD machinery. OBJECTIVE: Recently, it was shown that the mouse heart is protected from ischemic damage by ATF6; however, ERAD has not been studied in the cardiac context. A recent microarray study showed that the Derlin-3 (Derl3) gene, which encodes an important component of the ERAD machinery, is robustly induced by ATF6 in the mouse heart. METHODS AND RESULTS: In the present study, activated ATF6 induced Derl3 in cultured cardiomyocytes, and in the heart, in vivo. Simulated ischemia (sI), which activates ER stress, induced Derl3 in cultured myocytes, and in an in vivo mouse model of myocardial infarction, Derl3 was also induced. Derl3 overexpression enhanced ERAD and protected cardiomyocytes from simulated ischemia-induced cell death, whereas dominant-negative Derl3 decreased ERAD and increased simulated ischemia-induced cardiomyocyte death. CONCLUSIONS: This study describes a potentially protective role for Derl3 in the heart, and is the first to investigate the functional consequences of enhancing ERAD in the cardiac context.


Subject(s)
Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Myocardial Ischemia/metabolism , Myocardium/metabolism , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Animals, Newborn , Cell Hypoxia , Cell Survival , Cells, Cultured , Gene Expression Profiling , Humans , Immunoblotting , Membrane Proteins/genetics , Mice , Mice, Transgenic , MicroRNAs/genetics , Microscopy, Confocal , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Promoter Regions, Genetic/genetics , Rats , Reverse Transcriptase Polymerase Chain Reaction , Transduction, Genetic , Tunicamycin/pharmacology
4.
J Biol Chem ; 283(20): 14012-21, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18319259

ABSTRACT

Exposing cells to conditions that modulate growth can impair endoplasmic reticulum (ER) protein folding, leading to ER stress and activation of the transcription factor, ATF6. ATF6 binds to ER stress response elements in target genes, inducing expression of proteins that enhance the ER protein folding capacity, which helps overcome the stress and foster survival. To examine the mechanism of ATF6-mediated survival in vivo, we developed a transgenic mouse model that expresses a novel conditionally activated form of ATF6. We previously showed that activating ATF6 protected the hearts of ATF6 transgenic mice from ER stresses. In the present study, transcript profiling identified modulatory calcineurin interacting protein-1 (MCIP1), also known as regulator of calcineurin 1 (RCAN1), as a novel ATF6-inducible gene that encodes a known regulator of calcineurin/nuclear factor of activated T cells (NFAT)-mediated growth and development in many tissues. The ability of ATF6 to induce RCAN1 in vivo was replicated in cultured cardiac myocytes, where adenoviral (AdV)-mediated overexpression of activated ATF6 induced the RCAN1 promoter, up-regulated RCAN1 mRNA, inhibited calcineurin phosphatase activity, and exerted a striking growth modulating effect that was inhibited by RCAN1-targeted small interfering RNA. These results demonstrate that RCAN1 is a novel ATF6 target gene that may coordinate growth and ER stress signaling pathways. By modulating growth, RCAN1 may reduce the need for ER protein folding, thus helping to overcome the stress and enhance survival. Moreover, these results suggest that RCAN1 may also be a novel integrator of growth and ER stress signaling in many other tissues that depend on calcineurin/NFAT signaling for optimal growth and development.


Subject(s)
Activating Transcription Factor 6/metabolism , Endoplasmic Reticulum/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Muscle Proteins/metabolism , Animals , Calcium-Binding Proteins , Cells, Cultured , Mice , Mice, Transgenic , Models, Biological , Models, Statistical , Myocardium/metabolism , Oligonucleotide Array Sequence Analysis , RNA/metabolism , RNA, Small Interfering/metabolism , Rats , Signal Transduction
5.
Am J Physiol Heart Circ Physiol ; 291(5): H2462-72, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16766635

ABSTRACT

Ischemia-reperfusion (I/R) has critical consequences in the heart. Recent studies on the functions of I/R-activated kinases, such as p38 mitogen-activated protein kinase (MAPK), showed that I/R injury is reduced in the hearts of transgenic mice that overexpress the p38 MAPK activator MAPK kinase 6 (MKK6). This protection may be fostered by changes in the levels of many proteins not currently known to be regulated by p38. To examine this possibility, we employed the multidimensional protein identification technology MudPIT to characterize changes in levels of proteins in MKK6 transgenic mouse hearts, focusing on proteins in mitochondria, which play key roles in mediating I/R injury in the heart. Of the 386 mitochondrial proteins identified, the levels of 58 were decreased, while only 2 were increased in the MKK6 transgenic mouse hearts. Among those that were decreased were 21 mitochondrial oxidative phosphorylation complex proteins, which was unexpected because p38 is not known to mediate such decreases. Immunoblotting verified that proteins in each of the five oxidative phosphorylation complexes were reduced in MKK6 mouse hearts. On assessing functional consequences of these reductions, we found that MKK6 mouse heart mitochondria exhibited 50% lower oxidative respiration and I/R-mediated reactive oxygen species (ROS) generation, both of which are predicted consequences of decreased oxidative phosphorylation complex proteins. Thus the cardioprotection observed in MKK6 transgenic mouse hearts may be partly due to decreased electron transport, which is potentially beneficial, because damaging ROS are known to be generated by mitochondrial complexes I and III during reoxygenation.


Subject(s)
Heart/physiology , MAP Kinase Kinase 6/metabolism , Oxidative Phosphorylation , Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , MAP Kinase Kinase 6/genetics , Mice , Mice, Transgenic , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Models, Biological , Proteins/genetics
6.
Genome Biol ; 6(4): R32, 2005.
Article in English | MEDLINE | ID: mdl-15833119

ABSTRACT

BACKGROUND: Genetic control of gene transcription is a key component in genome evolution. To understand the transcriptional basis of natural variation, we have studied genome-wide variations in transcription and characterized the genetic variations in regulatory elements among Arabidopsis accessions. RESULTS: Among five accessions (Col-0, C24, Ler, WS-2, and NO-0) 7,508 probe sets with no detectable genomic sequence variations were identified on the basis of the comparative genomic hybridization to the Arabidopsis GeneChip microarray, and used for accession-specific transcriptome analysis. Two-way ANOVA analysis has identified 60 genes whose mRNA levels differed in different accession backgrounds in an organ-dependent manner. Most of these genes were involved in stress responses and late stages of plant development, such as seed development. Correlation analysis of expression patterns of these 7,508 genes between pairs of accessions identified a group of 65 highly plastic genes with distinct expression patterns in each accession. CONCLUSION: Genes that show substantial genetic variation in mRNA level are those with functions in signal transduction, transcription and stress response, suggesting the existence of variations in the regulatory mechanisms for these genes among different accessions. This is in contrast to those genes with significant polymorphisms in the coding regions identified by genomic hybridization, which include genes encoding transposon-related proteins, kinases and disease-resistance proteins. While relatively fewer sequence variations were detected on average in the coding regions of these genes, a number of differences were identified from the upstream regions, several of which alter potential cis-regulatory elements. Our results suggest that nucleotide polymorphisms in regulatory elements of genes encoding controlling factors could be primary targets of natural selection and a driving force behind the evolution of Arabidopsis accessions.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Genetic Variation/genetics , Transcription, Genetic/genetics , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Microarray Analysis , Polymorphism, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regression Analysis , Regulatory Sequences, Nucleic Acid/genetics , Reproducibility of Results , Species Specificity
7.
Trends Plant Sci ; 9(12): 591-6, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15564126

ABSTRACT

Genome-wide transcriptome analyses have identified hundreds of genes encoding transcription factors that are induced or repressed by a range of environmental stresses. Their complex expression patterns suggest that stress tolerance and resistance are controlled at the transcriptional level by a complicated gene regulatory network. The next steps towards understanding stress biology at the systems level are reconstructing the network and then verifying the roles these transcription factors play in the network.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Plants/genetics , Transcription Factors/physiology , Algorithms , Computational Biology , Environment , Gene Expression Profiling , Models, Biological , Plants/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...