Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Rapid Commun Mass Spectrom ; 38(4): e9688, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38212651

ABSTRACT

RATIONALE: Phenylethylamines are one of the most common types of new psychoactive substances, following synthetic cannabinoids and synthetic cathinones. They are regulated in many countries because of their strong hallucinogenic effects, which can cause serious nerve damage. There is a wide variety of phenylethylamines, exhibiting rapid renewal and extremely similar structures, therefore accurate qualitative analysis of isomers is a difficult problem in current drug analysis. METHODS: The dissociation pathways of the position isomers 2-(2-methylaminoprolyl)benzofuran (2-MAPB) and 5-(2-methylaminopropyl)benzofuran (5-MAPB) were investigated by gas chromatography-mass spectrometry and liquid chromatography coupled to high-resolution quadrupole Orbitrap MS. The dissociation patterns of the phenethylamine-based designer drugs 2-MAPB and 5-MAPB were explored and extended in this work based on MS combined with density functional theory studies. RESULTS: For electron ionization mass spectrometry (EI-MS) analysis, the dissociation patterns of 2-MAPB were similar to those of 5-MAPB. For electrospray ionization mass spectrometry (ESI-MSn ) analysis, the hydrogen atom on amino group was facile to form a intramolecular hydrogen bond with the oxygen atom on the parent nucleus of benzofuran in the structure of 2-MAPB, leading to higher abundance of the product ion at m/z 58. However, there was a conjugated system between the positive charge formed by the cleavage of the 5-MAPB side chain and the benzofuran ring, enabling the 5-MAPB to generate a product ion at m/z 131. Computational study showed that energy barrier and spin density difference distribution jointly control the selective dissociation in EI-MS, while different types of orbital interaction induced by intramolecular hydrogen bond led to different dissociation results in ESI-MSn . CONCLUSIONS: These different dissociation patterns could be used to distinguish 2-MAPB from 5-MAPB. This could assist forensic laboratories in the differentiation and characterization of potential isomers in these kinds of compounds, especially in mixtures.

2.
Sci Rep ; 13(1): 20130, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978234

ABSTRACT

This research aimed to investigate the effects of supplements containing fermented feed made from Citri Sarcodactylis Fructus by-products (CSFBP-Fermented feed) on the growth performance, immunological function, and gut health of broilers. 1080 cyan-shank partridge birds aged 47 days were chosen and casually distributed to four groups, each with 6 replicates and 45 birds per replicate. The experimental groups were provided with 1% (group T2), 3% (group T3) and 5% (group T4) of CSFBP-fermented feed in the basic diet, while the control group (group T1) received the basic diet. The findings revealed that supplementation with CSFBP-Fermented feed reduced ADFI and FCR and improved ADG in birds (P < 0.05). MDA levels in the serum of birds fed CSFBP-fermented feed were lower than in the control group (P < 0.05). The CAT activity in the serum of broilers increased after supplementation with 3% CSFBP-Fermented feed (P < 0.05). Supplementing broilers with CSFBP-fermented feed enhanced VH in the ileum, jejunum, and duodenum (P < 0.05). The addition of 3% CSFBP-Fermented feed decreased CD in the jejunum (P < 0.05). The addition of 3% and 5% CSFBP-Fermented feed increased the mRNA expression of ZO-1 and Occludin in the jejunum of broiler chickens and reduced the mRNA expression of IL-6 (P < 0.05). The addition of 3% CSFBP-Fermented feed increased the mRNA expression of Claudin in the jejunum of broiler chickens and reduced IL-1ß mRNA expression (P < 0.05). Compared to the control group, all experimental groups exhibited decreased mRNA expression of TNF-α and INF-γ in the jejunal mucosa of the birds (P < 0.05). According to research using high-throughput sequencing of microorganisms' 16S rDNA, and an analysis of α-diversity found that supplementing broilers with 3% CSFBP-Fermented feed decreased the number of bacteria in their cecum (P < 0.05). Bacteroidota was higher in all groups after supplementation with CSFBP-Fermented feed. At the genus level, after addition with 3% CSFBP-Fermented feed, the abundance of Bacteroide and Prevotellaceae_Ga6A1_group were higher than the control group (33.36% vs 29.95%, 4.35% vs 2.94%). The abundance of Rikenellaceae_RC9_gut_group and Fusobacterium were lower than the control group (5.52% vs. 7.17%,0.38% vs. 1.33%). In summary, supplementing the diet with CSFBP-Fermented feed can promote the growth of performance by enhancing intestinal morphology, and barrier function, as well as modulating intestinal inflammatory factors and microbial composition in broilers.


Subject(s)
Chickens , Galliformes , Animals , Chickens/microbiology , Dietary Supplements/analysis , Diet/veterinary , RNA, Messenger/metabolism , Animal Feed/analysis
3.
Molecules ; 28(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37764286

ABSTRACT

Ketamine analogues have been emerging in recent years and are causing severe health and social problems worldwide. Ketamine analogues use 2-phenyl-2-aminocyclohexanone as the basic structure and achieve physiological reactions similar to or even more robust than the prototype of ketamine by changing the substituents on the benzene ring (R1 and R2) and amine group (RN1). Therefore, the mass spectrometry (MS) fragmentation pathways and fragments of ketamine analogues have certain regularity. Eight ketamine analogues are systematically investigated by GC-QTOF/MS and LC-Q-Orbitrap MS/MS with the positive mode of electrospray ionization. The MS fragmentation patterns of ketamine analogues are summarized according to high-resolution MS data. The α-cleavage of carbon bond C1-C2 in the cyclohexanone moiety and further losses of CO, methyl radical, ethyl radical and propyl radical are the characteristic fragmentation pathways of ketamine analogues in EI-MS mode. The loss of H2O or the sequential loss of RN1NH2, CO and C4H6 are the distinctive fragmentation pathways of ketamine analogues in ESI-MS/MS mode. Moreover, these MS fragmentation patterns are first introduced for the rapid screening of ketamine analogues in suspicious powder. Furthermore, the structure of the ketamine analogue in suspicious powder is 2-(Methylamino)-2-(o-tolyl)cyclohexan-1-one, which is further confirmed by NMR. This study contributes to the identification of the chemical structure of ketamine analogues, which can be used for the rapid screening of ketamine analogues in seized chemicals.


Subject(s)
Ketamine , Tandem Mass Spectrometry , Spectrometry, Mass, Electrospray Ionization/methods , Ketamine/chemistry , Powders
4.
Front Vet Sci ; 10: 1195074, 2023.
Article in English | MEDLINE | ID: mdl-37426079

ABSTRACT

This study was to assess the effects of tea residues-fermented feed (TR-fermented feed) on production performance, egg quality, serum antioxidant capacity, caecal microbiota, and ammonia emissions of laying hens. A total of 1,296 Lohmann laying hens have randomly distributed four groups with six parallels and fed with diets TR-fermented feed at the rates of 0 (control), 1, 3, and 5%. The inclusion of 1% (TR)-fermented feed resulted in a significant increase in egg-laying rate and average egg weight of birds, and a reduction in the feed-to-egg ratio when compared to the control group (p < 0.05). The addition of 1 and 3% of (TR)-fermented feed significantly improved the Haugh unit of eggs (p < 0.05). The eggshell thickness was observed to increase by almost one-fold upon the inclusion of 3 and 5% (TR)-fermented feed in the basal diet (p < 0.05). The supplementation of 3% (TR)-fermented feed significantly increased the content of methionine, tyrosine, proline, essential amino acids (EAA), alpha linoleic acid (C18:3n6), docosanoic acid (C22:0), docosahexaenoic acid (C22:6n3), twenty-three carbonic acids (C23:0), ditetradecenoic acid (C24:1) and total omega-3 polyunsaturated fatty acids (∑ω-3 PUFA) in the eggs (p < 0.05). The addition of a certain amount of (TR)-fermented feed can enhance the activity of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) in chicken serum, and reduce the level of malondialdehyde (MDA) (p < 0.05). The ammonia concentration in the hen house of laying hens in the treatment groups decreased significantly (p < 0.05). Bacteroidetes and Firmicutes, the main phyla in the cecal bacterial community, were differentially abundant in each group, comprising greater than 55 and 33%, respectively. Collectively, this research indicates that (TR)-fermented feed supplementation improves the performance of laying hens and reduces ammonia emissions and can be used in industry-scale layer production.

5.
Front Vet Sci ; 10: 1231996, 2023.
Article in English | MEDLINE | ID: mdl-37470069

ABSTRACT

This research aimed to assess the impact of fermented Citri Sarcodactylis Fructus by-products (FCSF) on the growth performance, gut digestive enzyme activity, nutrient utilization efficiency, gut microbiota, and their metabolites in broiler chickens. A total of 1,080 male broiler chickens were allocated into four groups (T1-T4) consisting of 6 replicates per group, each containing 45 chickens. The basal diet was provided to group T1, while groups T2, T3, and T4 were supplemented with 1%, 3%, and 5% FCSF in the basal diet, respectively. The experimental period was 42 days. The findings revealed that supplementing FCSF improved the FW and ADG of broiler chickens, and led to a reduction in the F/G, ADFI, and mortality rate of broiler chickens (p < 0.05). Furthermore, supplementation with 3% and 5% FCSF improved the thigh yield, semi-eviscerated carcass yield, slaughter yield, and lipase activity in the duodenum and ileum of birds (p < 0.05). Additionally, supplementing 3% FCSF enhanced the activity of protease in the duodenum of broilers (p < 0.05). Moreover, supplementing 3% FCSF enhanced the utilization of total phosphorus, dry matter, crude protein, and crude ash in the feed by broilers (p < 0.05). Compared with the control group, supplementation of 3% and 5% FCSF reduced the serine content in broiler chicken breast meat (p < 0.05). Supplementing 1% FCSF significantly increased the C14:0, C14:1, and C20:1 content in the breast meat compared to the other experimental groups (p < 0.05). The levels of C20:4n6 and C23:0 in the breast meat of birds of FCSF supplemented groups were lower than in T1 (p < 0.05). Furthermore, the content of ∑ω-3PUFA decreased after supplementing with 3% and 5% FCSF (p < 0.05). 16SrDNA showed that supplementing 3% FCSF reduced the ACE, Chao1, and Shannon indices in the cecum of birds (p < 0.05). Supplementing 3% FCSF also decreased the abundance of the phylum Desulfobacterota and improved genera Coprobacter and Prevotella in the cecum of broiler chickens (p < 0.05). Metabolomic analysis of the gut microbiota revealed that supplementing 3% FCSF upregulated 6 metabolites and downregulated 16 metabolites (p < 0.05). Moreover, supplementing 3% FCSF downregulated 12 metabolic pathways and upregulated 3 metabolic pathways (p < 0.05). In summary our findings indicate that supplementing FCSF can improve the growth performance of broiler chickens by enhancing intestinal digestive enzyme activity, nutrient utilization, improving gut microbial diversity, and influencing the metabolism of gut microbiota.

6.
Front Vet Sci ; 10: 1157935, 2023.
Article in English | MEDLINE | ID: mdl-37056232

ABSTRACT

Introduction: The purpose of this research was to investigate how dietary supplementation with fermented herbal residues (FCMR) affected birds' development capacity, quality of meat, gut barrier, and cecum microbiota. Methods: 540 cyan-shank partridge birds aged 47 days were chosen and divided into two groups of six replicates each and 45 birds for each replicate. The control group (CON) received a basal diet, while the trial group decreased a basic diet containing 5% FCMR. Results and discussion: The findings revealed that the addition of FCMR decreased FCR and increased ADG in broilers (P < 0.05). Adding FCMR increased steaming loss in broiler chicken breasts (p < 0.05). Supplementation with FCMR significantly enhanced VH/CD and VH in the bird's intestine (jejunum, duodenum, and ileum) (p < 0.05). In addition, the addition of FCMR significantly down-regulated mRNA expression of INF-γ, IL-6, IL-1ß, and TNF-α and up-regulated mRNA expression of ZO-1, Occludin, and Claudin (P < 0.05). Microbial 16S rDNA high-throughput sequencing study revealed that supplements with FCMR modified the cecum microbiota, and α-diversity analysis showed that supplementation with FCMR reduced the cecum bacterial abundance in broilers (P < 0.05). At the phylum level, the relative abundance of Spirochaetota increased considerably following FCMR supplementation (P < 0.05). The broiler cecum's close lot of Prevotellaceae_UCG-001 (P < 0.05), Desulfovibrio, Muribaculaceae, and Fusobacterium (p < 0.05) reduced when FCMR was supplemented. Supplementation with FCMR can promote growth capacity and maintain intestinal health in birds by enhancing gut barrier function and modulating the inflammatory response and microbial composition.

7.
Rapid Commun Mass Spectrom ; 37(8): e9485, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36735629

ABSTRACT

RATIONALE: Synthetic cannabinoids are some of the most used and abused new psychoactive substances, because they can produce a stronger intense pleasure than natural cannabis. Most of the new synthetic cannabinoids are structurally similar to existing synthetic cannabinoids and can be obtained by modifying partial structures of the latter without changing their effects. Therefore, the derivatization rules and common fragmentation patterns of synthetic cannabinoids could be used for rapid screening and structural identification of them. METHODS: The derivatization rules of synthetic cannabinoids are summarized, and the common fragmentation pattern of synthetic cannabinoids including three typical cleavage pathways was explored and extended in this work based on combined mass spectrometry (MS) and density functional theory studies. Five synthetic cannabinoids in electronic cigarette oil from a drug case were separated and characterized using gas chromatography with MS and liquid chromatography coupled to high-resolution quadrupole Orbitrap MS. RESULTS: The structures of five synthetic cannabinoids in seized electronic cigarette oil were deduced from electron impact ion source (EI) MS and high-resolution electrospray ionization (ESI) MSn data, along with the derivatization rules and common fragmentation pattern of synthetic cannabinoids. The proposed structures of these synthetic cannabinoids were further verified via reference substances. Computational study showed that selective cleavage of these compounds was mainly controlled by spin population in EI-MS, but a tunneling effect arose from proton transfer in ESI-MSn detection, which has been rarely reported in previous works. CONCLUSIONS: Our results showed that EI-MS was suitable for identifying synthetic cannabinoids with aromatic ketone structure, which could also be extended to adamantane linked group. Nevertheless, synthetic cannabinoids with carbamoyl linked group were better characterized by high-resolution ESI-MSn compared to EI-MS. This study demonstrated a method with promising potential for rapid and reliable screening of synthetic cannabinoids in mixtures with enhanced detection throughput and operation simplicity.


Subject(s)
Cannabinoids , Electronic Nicotine Delivery Systems , Gas Chromatography-Mass Spectrometry/methods , Cannabinoids/analysis , Spectrometry, Mass, Electrospray Ionization , Chromatography, Liquid
8.
Biomacromolecules ; 23(1): 409-423, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34964604

ABSTRACT

The purpose of this study was to construct a glycogen (Gly)-based nanoparticle (NP) with liver-targeted and redox response to effectively deliver resveratrol (Res) for improving nonalcoholic fatty liver disease (NAFLD). Herein, Gly was modified using α-lipoic acid (α-LA) and lactobionic acid (Lac) to obtain an amphiphilic polymer (Gly-LA-Lac), which was self-assembled in water and then encapsulated in Res to form Res NPs with excellent stability. As expected, the Res NPs exhibited liver-targeted and redox response release behavior. In vitro cell studies demonstrated that the nanocarrier treatment enhanced the cellular uptake of Res and reduced oxidative stress and inflammatory factor levels. Meanwhile, the in vivo tests proved that the nanocarriers effectively reduced hepatic lipid accumulation and oxidative stress levels via regulating the TLR4/NF-κB signal pathway to improve liver damage in NAFLD mice. In conclusion, this study provides a promising strategy through the construction of Gly-based nanocarriers for the encapsulation of Res to effectively alleviate the process of NAFLD.


Subject(s)
Nanoparticles , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Glycogen , Liver , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Resveratrol/metabolism , Resveratrol/pharmacology
9.
Food Chem ; 358: 129861, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33932761

ABSTRACT

The characteristics of rice dreg protein isolate (RDPI) treated by microfluidization (0, 40, 80, 120, and 160 MPa) with or without proteolysis were investigated. Alcalase, Neutrase, and the combination of the two (Alcalcase:Neutrase = 1:1 [w/w]) were adopted for hydrolysis. The surface hydrophobicity and solubility of RDPI were increased. As pressure increased, different structures of RDPI exhibited disaggregation (<120 MPa) and reaggregation (160 MPa), and the effect on proteolysis was significant. The solubility of Neutrase and combined enzyme hydrolysates was improved after microfluidization. Additionally, the optimum choice of microfluidization (40 MPa) and Neutrase was efficient for improving the DPPH radical scavenging activity. The results indicate that both pressure level and enzyme type synergistically determine the functionality and antioxidant activities of products. This work may provide an alternative methodology for improving the utilization of RDPI in the food industry through desirable modifications.


Subject(s)
Antioxidants/chemistry , Oryza/chemistry , Plant Proteins, Dietary/chemistry , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Plant Proteins, Dietary/isolation & purification , Pressure , Protein Hydrolysates/chemistry , Proteolysis , Solubility , Subtilisins/chemistry , Subtilisins/metabolism
10.
Eur J Med Chem ; 214: 113203, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33530028

ABSTRACT

A novel series of novel N-substituted (indole or indazole) benzamides were synthesized, and their anti-tumor properties were evaluated. The majority of tested compounds possessed moderate cytotoxicity, but inspiringly, we verified that active compound 5d presents an astonishing advantage by inhibiting the adhesion, migration, and invasion of osteosarcoma (OS) cells in vitro. Mechanistically, we confirmed 5d inhibited the migration ability of OS cells via the expression of genes related to adhesion, migration, and invasion. This effects of 5d suggest that it can be used as a potential chemotherapeutic drug to some aggressive and/or metastatic cancers, as well as in combination with other clinical anti-cancer drugs. In turn, this could enhance the therapeutic effect or reduce the risk of cell migration.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Osteosarcoma/metabolism , Osteosarcoma/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
11.
J Med Chem ; 62(11): 5453-5469, 2019 06 13.
Article in English | MEDLINE | ID: mdl-30998353

ABSTRACT

Acute lung injury (ALI) is often caused by systemic inflammatory responses. Targeting the myeloid differentiation protein 2/toll-like receptor 4 (MD2-TLR4) complex may be a promising way to treat Gram-negative bacterial-induced inflammatory disorders. In this study, we report the design and synthesis of a new series of 3-(indol-5-yl)-indazoles, which were evaluated for their anti-inflammatory activities in macrophages. Among the analogues generated, the promising 3-(indol-5-yl)-indazole analogue 22m inhibited lipopolysaccharide (LPS)-induced expression of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in macrophages with IC50 values of 0.89 and 0.53 µM, respectively. Compound 22m was then identified as an MD2-TLR4 antagonist in suppressing LPS-induced inflammatory responses. In vivo administration of 22m significantly inhibited macrophage infiltration and ameliorated histopathological changes in lung tissues of LPS-challenged mice. Our studies have identified a new 3-(indol-5-yl)-indazole, 22m, as a potent MD2-TLR4 inhibitor and lay the groundwork for future drug development of anti-inflammatory agents for the treatment of ALI.


Subject(s)
Acute Lung Injury/drug therapy , Drug Design , Indazoles/chemistry , Indazoles/pharmacology , Lymphocyte Antigen 96/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Indazoles/chemical synthesis , Indazoles/therapeutic use , Lymphocyte Antigen 96/chemistry , Mice , Models, Molecular , Protein Conformation , Toll-Like Receptor 4/chemistry
12.
J Nat Prod ; 82(4): 748-755, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30896163

ABSTRACT

The known chalcone (±)-sanjuanolide (1) can be isolated from Dalea frutescens. This study presents a convergent strategy for the first total synthesis of ( R)-, ( S)-, and (±)-sanjuanolide (1). The key step for synthesizing ( R)- and ( S)-1 was a Corey-Bakshi-Shibata enantioselective carbonyl reduction to construct the C-2″ configuration. ( R)-1 efficiently inhibited the lipopolysaccharides (LPS)-induced expression of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), while ( S)-1 produced no significant anti-inflammatory effect. ( R)-1 also effectively inhibited the mRNA expression of several inflammatory cytokines after the LPS challenge in vitro. The synthesis and biological properties of these compounds have confirmed ( R)-sanjuanolide and (±)-sanjuanolide as promising new leads for developing anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Fabaceae/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Humans , Interleukin-6/antagonists & inhibitors , Lipopolysaccharides/antagonists & inhibitors , Molecular Structure , Stereoisomerism , Tumor Necrosis Factor-alpha/antagonists & inhibitors
13.
Eur J Med Chem ; 167: 414-425, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30780088

ABSTRACT

A novel series of di-carbonyl analogs of curcumin (DACs) were prepared and evaluated for their anti-inflammatory properties. Preliminary results showed that a vast majority of compounds tested in this study could effectively suppress LPS-induced production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Structure-activity relationships of the compounds were discussed. Compounds 5a27 and 5a28 showed the most potent anti-inflammatory activities and had higher structural stability and orally bioavailability than curcumin in vitro. Mechanistically, they inhibited the activation of macrophages via the blockade of mitogen-activated protein kinase (MAPK) signaling and nuclear translocation of NF-κB. In vivo, 5a27 and 5a28 markedly alleviated lipopolysaccharides (LPS)-induced acute lung injury (ALI). The wet/dry ratio of lungs was significantly normalized by the active compounds, which was consistent with the suppression of neutrophil infiltration and production of proinflammatory cytokines. Collectively, these results present a new series of curcumin analogs as promising anti-inflammatory agents for treatment of ALI.


Subject(s)
Acute Lung Injury/drug therapy , Curcumin/analogs & derivatives , Curcumin/pharmacology , Drug Design , Acute Lung Injury/chemically induced , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Biological Availability , Curcumin/chemical synthesis , Curcumin/pharmacokinetics , Interleukin-6/metabolism , Lipopolysaccharides , Macrophage Activation/drug effects , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
14.
Drug Des Devel Ther ; 12: 887-899, 2018.
Article in English | MEDLINE | ID: mdl-29719375

ABSTRACT

PURPOSE: The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. METHODS: A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. RESULTS: Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f, was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. CONCLUSION: The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Indans/pharmacology , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Dose-Response Relationship, Drug , Indans/chemical synthesis , Indans/chemistry , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship
15.
Zhonghua Er Bi Yan Hou Ke Za Zhi ; 37(5): 384-7, 2002 Oct.
Article in Chinese | MEDLINE | ID: mdl-12772464

ABSTRACT

OBJECTIVE: To study the feasibility, surgical techniques and results of surgical treatment of oropharyngeal glossal epiglottic carcinoma with laryngeal and glossal functions preserved. METHODS: A retrospective review of 21 (17 males, 4 females, age range 44 to 72 years) cases with carcinoma extending from the oropharynx, glossa to the epiglottis treated during 1990 to 2000 was conducted. The clinical stage was T2N0 in 4, T2N1 in 5 and T3N1 in 12 according to 1992 UICC. All the cases were undergone partial resection of the glossal base-epiglottis and suproglottic horizontal partial laryngectomy. Seventeen cases received selective neck dissections and all the patients received postoperative radiotherapy (50-60 Gy). RESULTS: The 3-year and 5-year survival rates in this series were 73.3% and 57.1%, respectively. Decannulation and complete preservation of laryngeal and glossal functions were achieved in 20 cases (95.7%), while partial preservation (speaking and deglutition) in one case (4.2%). CONCLUSION: Preservation of the laryngeal and glossal functions in surgical treatment of oropharyngeal glossal epiglottic carcinoma is feasible. Subhyoid approach was proved to be the best way for tumor resection in such an extent.


Subject(s)
Epiglottis/surgery , Larynx/physiopathology , Oropharyngeal Neoplasms/surgery , Tongue Neoplasms/surgery , Tongue/physiopathology , Adult , Aged , Female , Humans , Laryngectomy/methods , Male , Middle Aged , Neck Dissection , Oropharyngeal Neoplasms/physiopathology , Plastic Surgery Procedures/methods , Retrospective Studies , Tongue Neoplasms/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...