Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 238(Pt 1): 117151, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37716388

ABSTRACT

Copper oxide nanoparticles (CuO NPs) and ciprofloxacin (CIP) have ecological risk to humans and ecosystems. Polyvinylchloride microplastics (PVC MPs), as a representative of microplastics, may often coexist with CuO NPs and CIP in wastewater treatment systems due to their widespread application. However, the co-impact of PVC MPs in wastewater systems contained with CuO NPs and CIP on nitrogen removal and ecological risk is not clear. In this work, PVC MPs co-impacts on the toxicity of CuO NPs and CIP to aerobic granular sludge (AGS) systems and potential mechanisms were investigated. 10 mg/L PVC MPs co-addition did not significantly affect the nitrogen removal, but it definitely changed the microbial community structure and enhanced the propagation and horizontal transfer of antibiotics resistance genes (ARGs). 100 mg/L PVC MPs co-addition resulted in a raise of CuO NP toxicity to the AGS system, but reduced the co-toxicity of CuO NPs and CIP and ARGs expression. The co-impacts with different PVC MPs concentration influenced Cu2+ concentrations, cell membrane integrity, extracellular polymeric substances (EPS) contents and microbial communities in AGS systems, and lead to a change of nitrogen removal.


Subject(s)
Microbiota , Nanoparticles , Humans , Sewage , Microplastics , Anti-Bacterial Agents , Plastics , Waste Disposal, Fluid , Nitrogen , Denitrification , Nanoparticles/chemistry , Ciprofloxacin , Polyvinyl Chloride , Bioreactors
2.
Sci Total Environ ; 859(Pt 1): 160191, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36395855

ABSTRACT

Quorum sensing (QS) and quorum quenching (QQ) are common phenomena in microbial systems and play an important role in the nitrification process. However, rapidly start up partial nitrification regulated by N-acyl-homoserine lactones (AHLs)-mediated QS or QQ has not been reported. Hence, we chose N-butyryl homoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL) as the representative AHLs, and Vanillin as the representative quorum sensing inhibitor (QSI) combined intermittent aeration to investigate their effects on the start-up process of partial nitrification. The start-up speed in the group with C4-HSL or C6-HSL addition was 1.42 or 1.26 times faster than that without addition, respectively. Meanwhile, the ammonium removal efficiency with C4-HSL or C6-HSL addition was increased by 13.87 % and 17.30 % than that of the control group, respectively. And, partial nitrification could maintain for a certain period without AHLs further addition. The increase of Nitrosomonas abundance and ammonia monooxygenase (AMO) activity, and the decrease of Nitrobacter abundance and nitrite oxidoreductase (NXR) activity were the reasons for the rapid start-up of partial nitrification in the AHLs groups. Vanillin addition reduced AMO and hydroxylamine oxidoreductase (HAO) activity, and increased Nitrobacter abundance and NXR activity, thus these were not conducive to achieving partial nitrification. Denitrifying bacteria (Hydrogenophaga, Thauera and Aquimonas) abundance increased in the Vanillin group. QS-related bacteria and gene abundance were elevated in the AHLs group, and reduced in the Vanillin group. Function prediction demonstrated that AHLs promoted the nitrogen cycle while Vanillin enhanced the carbon cycle. This exploration might provide a new technical insight into the rapid start-up of partial nitrification based on QS control.


Subject(s)
Acyl-Butyrolactones , Quorum Sensing , Nitrification , Nitrobacter , Bacteria
3.
Chemosphere ; 312(Pt 1): 137254, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36395892

ABSTRACT

Nanoparticles and antibiotics are toxic to humans and ecosystems, and they inevitably coexist in the wastewater treatment plants. Hence, the co-existence effects and stress mechanism of copper (II) oxide nanoparticles (CuO NPs) and ciprofloxacin (CIP) on simultaneous nitrification, endogenous denitrification and phosphorus removal (SNEDPR) by aerobic granular sludge (AGS) were investigated here. The co-existence stress of 5 mg/L CuO NPs and 5 mg/L CIP resulted in the synergistic inhibitory effect on nutrient removal. Transformation inhibition mechanisms of carbon (C), nitrogen (N) and phosphorus (P) with CuO NPs and CIP addition were time-dependent. Furthermore, the long-term stress mainly inhibited PO43--P removal by inhibiting phosphorus release process, while short-term stress mainly inhibited phosphorus uptake process. The synergistic inhibitory effect of CuO NPs and CIP may be due to the changes of physicochemical characteristics under the co-existence of CuO NPs and CIP. This further altered the sludge characteristics, microbial community structure and functional metabolic pathways under the long-term stress. Resistance genes analysis exhibited that the co-existence stress of CuO NPs and CIP induced the amplification of qnrA (2.38 folds), qnrB (4.70 folds) and intI1 (3.41 folds) compared with the control group.


Subject(s)
Nanoparticles , Nitrification , Humans , Sewage/chemistry , Phosphorus/metabolism , Copper/toxicity , Denitrification , Ciprofloxacin/pharmacology , Ecosystem , Waste Disposal, Fluid/methods , Bioreactors , Nitrogen/metabolism , Nanoparticles/toxicity , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...