Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 799
Filter
1.
Nat Commun ; 15(1): 4677, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824146

ABSTRACT

Electron microscopy (EM) revolutionized the way to visualize cellular ultrastructure. Volume EM (vEM) has further broadened its three-dimensional nanoscale imaging capacity. However, intrinsic trade-offs between imaging speed and quality of EM restrict the attainable imaging area and volume. Isotropic imaging with vEM for large biological volumes remains unachievable. Here, we developed EMDiffuse, a suite of algorithms designed to enhance EM and vEM capabilities, leveraging the cutting-edge image generation diffusion model. EMDiffuse generates realistic predictions with high resolution ultrastructural details and exhibits robust transferability by taking only one pair of images of 3 megapixels to fine-tune in denoising and super-resolution tasks. EMDiffuse also demonstrated proficiency in the isotropic vEM reconstruction task, generating isotropic volume even in the absence of isotropic training data. We demonstrated the robustness of EMDiffuse by generating isotropic volumes from seven public datasets obtained from different vEM techniques and instruments. The generated isotropic volume enables accurate three-dimensional nanoscale ultrastructure analysis. EMDiffuse also features self-assessment functionalities on predictions' reliability. We envision EMDiffuse to pave the way for investigations of the intricate subcellular nanoscale ultrastructure within large volumes of biological systems.

2.
Article in English | MEDLINE | ID: mdl-38705922

ABSTRACT

PURPOSE: The utilization of image-guided surgery has demonstrated its ability to improve the precision and safety of minimally invasive surgery (MIS). Non-rigid scene reconstruction is a challenge in image-guided system duo to uniform texture, smoke, and instrument occlusion, etc. METHODS: In this paper, we introduced an algorithm for 3D reconstruction aimed at non-rigid surgery scenes. The proposed method comprises two main components: firstly, the front-end process involves the initial reconstruction of 3D information for deformable soft tissues using embedded deformation graph (EDG) on the basis of dual quaternions, enabling the reconstruction without the need for prior knowledge of the target. Secondly, the EDG is integrated with isometric nonrigid structure from motion (Iso-NRSFM) to facilitate centralized optimization of the observed map points and camera motion across different time instances in deformable scenes. RESULTS: For the quantitative evaluation of the proposed method, we conducted comparative experiments with both synthetic datasets and publicly available datasets against the state-of-the-art 3D reconstruction method, DefSLAM. The test results show that our proposed method achieved a maximum reduction of 1.6 mm in average reconstruction error compared to method DefSLAM across all datasets. Additionally, qualitative experiments were performed on video scene datasets involving surgical instrument occlusions. CONCLUSION: Our method proved to outperform DefSLAM on both synthetic datasets and public datasets through experiments, demonstrating its robustness and accuracy in the reconstruction of soft tissues in dynamic surgical scenes. This success highlights the potential clinical application of our method in delivering surgeons with critical shape and depth information for MIS.

3.
BMC Cancer ; 24(1): 565, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711015

ABSTRACT

BACKGROUND: Recent studies showed heterogeneity in stage IVB patients. However, few studies focused on the prognosis of supraclavicular metastatic ovarian cancer. This study aimed to explore the prognostic factors and the role of primary debulking in IVB ovarian cancer patients with supraclavicular lymph node metastasis. METHODS: We retrospectively analyzed patients newly diagnosed as primary epithelial ovarian cancer with supraclavicular lymph node metastasis from January 2015 to July 2020. Supraclavicular lymph node metastasis was defined as either the pathological diagnosis by supraclavicular lymph node biopsy, or the radiological diagnosis by positron emission tomography-computed tomography (PET-CT). RESULTS: In 51 patients, 37 was diagnosed with metastatic supraclavicular lymph nodes by histology, 46 by PET-CT, and 32 by both methods. Forty-four (86.3%) with simultaneous metastatic paraaortic lymph nodes (PALNs) by imaging before surgery or neoadjuvant chemotherapy were defined as "continuous-metastasis type", while the other 7 (13.7%) defined as "skip-metastasis type". Nineteen patients were confirmed with metastatic PALNs by histology. Thirty-four patients were investigated for BRCA mutation, 17 had germline or somatic BRCA1/2 mutations (g/sBRCAm). With a median follow-up of 30.0 months (6.3-63.4 m), 16 patients (31.4%) died. The median PFS and OS of the cohort were 17.3 and 48.9 months. Survival analysis showed that "continuous-metastasis type" had longer OS and PFS than "skip-metastasis type" (OS: 50.0/26.6 months, PFS: 18.5/7.2months, p=0.005/0.002). BRCA mutation carriers also had longer OS and PFS than noncarriers (OS: 57.4 /38.5 m, p=0.031; PFS: 23.6/15.2m, p=0.005). Multivariate analysis revealed only metastatic PALNs was independent prognostic factor for OS (p=0.040). Among "continuous-metastasis type" patients, 22 (50.0%) achieved R0 abdominopelvic debulking, who had significantly longer OS (55.3/42.3 months, p =0.034) than those with residual abdominopelvic tumors. CONCLUSIONS: In stage IVB ovarian cancer patients with supraclavicular lymph nodes metastasis, those defined as "continuous-metastasis type" with positive PALNs had better prognosis. For them, optimal abdominopelvic debulking had prognostic benefit, although metastatic supraclavicular lymph nodes were not resected. Higher BRCA mutation rate than the general population of ovarian cancer patients was observed in patients with IVB supraclavicular lymph node metastasis, leading to better survival as expected.


Subject(s)
Cytoreduction Surgical Procedures , Lymphatic Metastasis , Neoplasm Staging , Ovarian Neoplasms , Humans , Female , Retrospective Studies , Middle Aged , Prognosis , Ovarian Neoplasms/pathology , Ovarian Neoplasms/surgery , Ovarian Neoplasms/mortality , Cytoreduction Surgical Procedures/methods , Adult , Aged , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/surgery , Carcinoma, Ovarian Epithelial/mortality , Lymph Nodes/pathology , Lymph Nodes/surgery , China/epidemiology , Positron Emission Tomography Computed Tomography/methods , BRCA1 Protein/genetics , East Asian People
4.
Cancer Immunol Res ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752667

ABSTRACT

An immunosuppressive microenvironment promotes the occurrence and development of tumors. Low apolipoprotein A1 (ApoA1) is closely related to tumor development, but the underlying mechanisms are unclear. This study investigated the association between serum ApoA1 levels and the immune microenvironment in endometrial, ovarian, and lung cancers. The serum ApoA1 level was decreased significantly in patients with endometrial and ovarian cancers compared with healthy controls. In endometrial cancer tissues, the low serum ApoA1 group showed increased CD163+ macrophage infiltration and decreased CD8+ T-cell infiltration compared with the normal serum ApoA1 group. Compromised tumor-infiltrating CD8+ T-cell functions and decreased CD8+ T-cell infiltration also were found in tumor-bearing ApoA1-knockout mice. CD8+ T-cell depletion experiments confirmed that ApoA1 exerted its antitumor activity in a CD8+ T cell-dependent manner. In vitro experiments showed that the ApoA1 mimetic peptide L-4F directly potentiated the antitumor activity of CD8+ T cells via a HIF-1α-mediated glycolysis pathway. Mechanistically, ApoA1 suppressed ubiquitin-mediated degradation of HIF-1α protein by downregulating HIF-1α subunit α inhibitor. This regulatory process maintained the stability of HIF-1α protein and activated the HIF-1α signaling pathway. Tumor-bearing ApoA1 transgenic mice showed an increased response to anti-PD-1 therapy, leading to reduced tumor growth along with increased infiltration of activated CD8+ T cells and enhanced tumor necrosis. The data reported herein demonstrate critical roles for ApoA1 in enhancing CD8+ T-cell immune functions via HIF-1α-mediated glycolysis and support clinical investigation of combining ApoA1 supplementation with anti-PD-1 therapy for treating cancer.

5.
Acta Diabetol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780614

ABSTRACT

PURPOSE: To explore variations in systemic and ocular parameters among patients with diabetes, both with and without diabetic peripheral neuropathy (DPN) and to identify sensitive indicators for DPN diagnosis. METHODS: Ninty-five patients with type 2 diabetes mellitus (T2DM) were involved in this cross-sectional study, including 49 without DPN and 46 with DPN. Ocular parameters were obtained using optical coherence tomography angiography (OCTA) and corneal confocal microscopy (CCM). RESULT: Patients with DPN presented with significantly higher HbA1c (p < 0.05) and glycated albumin (GA, p < 0.01) levels, increased prevalence of diabetic retinopathy (DR, p < 0.05), and lower serum albumin (ALB, p < 0.01) and red blood cell (RBC, p < 0.05) levels. Ocular assessments revealed reduced corneal nerve fiber length (CNFL, p < 0.001) and enlarged foveal avascular zone (FAZ) area (p < 0.05) in DPN group. Logistic regression analysis indicated a significant association of presence of DR, RBC, GA, ALB, CNFL and DPN (p < 0.05, respectively). In the binary logistic regression for DPN risk, all three models including the presence of DR and CNFL exhibited the area under the curve (AUC) exceeding 0.8. CONCLUSION: The study establishes a strong correlation between ocular parameters and DPN, highlighting CCM's role in early diagnosis. Combining systemic and ocular indicators improves DPN risk assessment and early management.

6.
Cont Lens Anterior Eye ; : 102186, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782621

ABSTRACT

PURPOSE: Non-adherence to standard wear, care, and follow-up procedures is a major risk factor for contact lens-related complications. The effectiveness of orthokeratology largely depends on the wearer's adherence. However, a deficiency in scales capturing adherence beliefs pertinent to orthokeratology exacerbates the lack of guidance for effective intervention strategies. The purpose of this study is to develop and evaluate the psychometric properties of a new scale based on the Theory of Planned Behavior that assesses the level of adherence among ortho-k wearers. METHODS: This study involved three stages following the STROBE checklist: (1) developing initial scale items based on the Theory of Planned Behavior, a literature review, and a qualitative study; (2) evaluation of content and face validity; (3) psychometric testing on 296 participants. Item analysis, based on Classical Test Theory, assessed the overall consistency, reliability, and validity of the scale. RESULTS: The final 37-item Beliefs about the Orthokeratology Lens Compliance Scale (BOLCS) comprises 11 dimensions. The Cronbach's alpha coefficients for each dimension ranged from 0.560 to 0.798. The folded half reliabilities were 0.845, and the combined reliabilities ranged from 0.676 to 0.793, indicating strong reliability. Item-level CVI (I-CVI) and scale-level CVI/average (S-CVI/Ave) values, assessed by the panel, ranged from 0.71 to 1 and 0.954, respectively. Exploratory and confirmatory factor analyses supported a factor structure consistent with the theoretical model. CONCLUSIONS: The scale's construction adhered to a standardized process, yielding preliminary validation results with satisfactory reliability and validity.

7.
J Biomed Res ; : 1-15, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38808551

ABSTRACT

Premature ovarian insufficiency (POI) caused by chemotherapy is a common complication in female cancer survivors of childbearing age. Traditional methods including mesenchymal stem cell (MSC) transplant and hormone replacement therapy have limited clinical application due to their drawbacks, and more methods need to be developed. In the current study, the potential effects and underlying mechanisms of human umbilical cord MSC-derived extracellular vesicles (hUCMSC-EVs) were investigated in a cisplatin (CDDP)-induced POI mouse model and a human granulosa cell (GC) line. The results showed that hUCMSC-EVs significantly attenuated body weight loss, ovarian weight loss, ovary atrophy, and follicle loss in moderate-dose (1.5 mg/kg) CDDP-induced POI mice, similar to the effects observed with hUCMSCs. We further discovered that the hUCMSC-EVs might inhibit CDDP-induced ovarian GC apoptosis by upregulating anti-apoptotic miRNA levels in GCs, thereby downregulating the mRNA levels of multiple pro-apoptotic genes. In general, our findings indicate that moderate-dose chemotherapy may be a better choice for clinical oncotherapy considering the effective rescue of oncotherapy-induced ovarian damage with hUCMSC-EVs. Additionally, multiple miRNAs in hUCMSC-EVs may potentially be used to inhibit chemotherapy-induced ovarian GC apoptosis, thereby restoring ovarian function and improving the life quality of female cancer patients.

8.
Front Immunol ; 15: 1365226, 2024.
Article in English | MEDLINE | ID: mdl-38812511

ABSTRACT

Objective: The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression. Methods: A total of 360 adult patients with DKD were recruited for this study. The expression of immune checkpoint molecules on T lymphocytes was assessed by flow cytometry for peripheral blood and immunofluorescence staining for kidney tissue. Single-cell sequencing (scRNA-seq) data from the kidneys of DKD mouse model were analyzed. Results: Patients with DKD exhibited a reduction in the proportion of CD3+TIM-3+ T cells in circulation concurrent with the emergence of significant albuminuria and hematuria (p=0.008 and 0.02, respectively). Conversely, the incidence of infection during DKD progression correlated with an elevation of peripheral CD3+TIM-3+ T cells (p=0.01). Both univariate and multivariate logistic regression analysis revealed a significant inverse relationship between the proportion of peripheral CD3+TIM-3+ T cells and severe interstitial mononuclear infiltration (OR: 0.193, 95%CI: 0.040,0.926, p=0.04). Immunofluorescence assays demonstrated an increase of CD3+, TIM-3+ and CD3+TIM-3+ interstitial mononuclear cells in the kidneys of DKD patients as compared to patients diagnosed with minimal change disease (p=0.03, 0.02 and 0.002, respectively). ScRNA-seq analysis revealed decreased gene expression of TIM3 on T lymphocytes in DKD compared to control. And one of TIM-3's main ligands, Galectin-9 on immune cells showed a decreasing trend in gene expression as kidney damage worsened. Conclusion: Our study underscores the potential protective role of TIM-3 on T lymphocytes in attenuating the progression of DKD and suggests that monitoring circulating CD3+TIM3+ T cells may serve as a viable strategy for identifying DKD patients at heightened risk of disease progression.


Subject(s)
Diabetic Nephropathies , Hepatitis A Virus Cellular Receptor 2 , T-Lymphocytes , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Diabetic Nephropathies/immunology , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Female , Middle Aged , Male , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Aged , Adult , Inflammation/immunology , Kidney/pathology , Kidney/immunology , Mice, Inbred C57BL , Disease Progression
9.
Mol Cancer ; 23(1): 111, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778348

ABSTRACT

BACKGROUND: Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS: This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS: Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS: Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Female , Drug Resistance, Neoplasm/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Prognosis , Histone-Lysine N-Methyltransferase
10.
Article in English | MEDLINE | ID: mdl-38814529

ABSTRACT

PURPOSE: The segmentation of the heart and great vessels in CT images of congenital heart disease (CHD) is critical for the clinical assessment of cardiac anomalies and the diagnosis of CHD. However, the diverse types and abnormalities inherent in CHD present significant challenges to comprehensive heart segmentation. METHODS: We proposed a novel two-stage segmentation approach, integrating a Convolutional Neural Network (CNN) with a postprocessing method with conditioned energy function for pulmonary and aorta. The initial stage employs a CNN enhanced by a gated self-attention mechanism for the segmentation of five primary heart structures and two major vessels. Subsequently, the second stage utilizes a conditioned energy function specifically tailored to refine the segmentation of the pulmonary artery and aorta, ensuring vascular continuity. RESULTS: Our method was evaluated on a public dataset including 110 3D CT volumes, encompassing 16 CHD variants. Compared to prevailing segmentation techniques (U-Net, V-Net, Unetr, dynUnet), our approach demonstrated improvements of 1.02, 1.04, and 1.41% in Dice Coefficient (DSC), Intersection over Union (IOU), and the 95th percentile Hausdorff Distance (HD95), respectively, for heart structure segmentation. For the two great vessels, the enhancements were 1.05, 1.07, and 1.42% in these metrics. CONCLUSION: The outcomes on the public dataset affirm the efficacy of our proposed segmentation method. Precise segmentation of the entire heart and great vessels can significantly aid in the diagnosis and treatment of CHD, underscoring the clinical relevance of our findings.

12.
Eur J Pharmacol ; 974: 176630, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692426

ABSTRACT

Osteoporosis is the most common bone disorder, in which an imbalance between osteoclastic bone resorption and osteoblastic bone formation disrupts bone homeostasis. Osteoporosis management using anti-osteoclastic agents is a promising strategy; however, this remains an unmet need. Sphingosine-1-phosphate (S1P) and its receptors (S1PRs) are essential for maintaining bone homeostasis. Here, we identified that Siponimod, a Food and Drug Administration-approved S1PR antagonist for the treatment of multiple sclerosis, shows promising therapeutic effects against osteoporosis by inhibiting osteoclast formation and function. We found that Siponimod inhibited osteoclast formation in a dose-dependent manner without causing cytotoxicity. Podosome belt staining and bone resorption assays indicated that Siponimod treatment impaired osteoclast function. Western blot and qPCR assays demonstrated that Siponimod suppressed the expression of osteoclast-specific markers, including C-Fos, Nftac1, and Ctsk. Mechanistically, we validated that Siponimod downregulated receptor activator of nuclear factor kappa B ligand (RANKL)-induced Mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways during osteoclastogenesis. Moreover, in a preclinical mouse model, Siponimod prevented ovariectomy-induced bone loss by suppressing osteoclast activity in vivo. Collectively, these results suggest that Siponimod could serve as an alternative therapeutic agent for the treatment of osteoporosis.


Subject(s)
Azetidines , Benzyl Compounds , Drug Repositioning , Multiple Sclerosis , Osteoclasts , Osteoporosis , Animals , Mice , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Benzyl Compounds/pharmacology , Benzyl Compounds/therapeutic use , Azetidines/pharmacology , Azetidines/therapeutic use , Multiple Sclerosis/drug therapy , Female , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Osteogenesis/drug effects , NF-kappa B/metabolism , Mice, Inbred C57BL , RAW 264.7 Cells , Bone Resorption/drug therapy , Signal Transduction/drug effects , RANK Ligand/metabolism , Humans
13.
Article in English | MEDLINE | ID: mdl-38635118

ABSTRACT

PURPOSE: Reverse shoulder arthroplasty has demonstrated excellent clinical efficacy for patients with shoulder joint diseases and is increasingly in demand. Traditional surgery faces challenges such as limited exposed surfaces and a narrow field of vision, leading to a shorter prosthesis lifespan and a higher risk of complications. In this study, an optical navigation system was proposed to assist surgeons in real-time tracking of the surgical scene. METHODS: Our optical navigation system was developed using the NDI Polaris Spectra device and several open-source platforms. The first step involved using the preoperative medical image to plan screw implantation paths. Real-time tracking of the patient phantom or cadaver and the surgical instrument was achieved through registration and calibration algorithms. Surgeons were guided on drilling through visualization methods. Postoperative results were compared with the planned implantation paths, and an algorithm was introduced to correct errors caused by the incorrect beginning points. RESULTS: Experiments involved three scapula cadavers and their corresponding phantoms with identical anatomy. For each experiment, three holes were completed with drills with diameters of 3.2 mm and 8.0 mm, respectively. Comparisons between the postoperative actual screw implantation paths and the preoperative planned implantation paths revealed an entry error of 1.05 ± 0.15 mm and an angle error of 2.47 ± 0.55° for phantom experiments. For cadaver experiments, the entry error was 1.53 ± 0.22 mm, and the angle error was 4.91 ± 0.78°. CONCLUSION: Our proposed optical navigation system successfully achieved real-time tracking of the surgical site, encompassing the patient phantom or cadaver and surgical instrument, thereby aiding surgeons in achieving precise surgical outcomes. Future study will explore the integration of robots to further enhance surgical efficiency and effectiveness.

15.
Curr Med Imaging ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38639282

ABSTRACT

BACKGROUND: Endometrial Cancer (EC) is a highly heterogeneous cancer comprising both histological and molecular subtypes. Using a non-invasive modality method to trigger these subtypes as early as possible can aid clinicians in establishing individualized treatment. PURPOSE: The study aimed to clarify the value of the Apparent Diffusion Coefficient (ADC) of EC MRI in determining molecular subtypes. MATERIAL AND METHODS: We retrospectively recruited 109 patients with pathologically proven EC (78 endometrioid cancers and 31 non-endometrioid cancers) with available molecular classification from a tertiary centre. MRI was prospectively performed a month prior to surgery; images were blindly interpreted by two experienced radiologists with consensus reading. The ADC value was measured by an experienced radiologist on the commercially available processing workstation. Interoperator measurement consistency was calculated. RESULTS: Our sample comprised 17 PLOE, 32 MSI-H, 31 NSMP, and 29 P53abn ECs. Clinical information did not differ significantly among the groups. The maximum diameter and volume of the lesions differed among the groups. The ADC value in the maximal area (ADCarea) or region of interest (ROI, ADCroi) in the P53abn group was higher than that in the other groups (894.0 ±12.6 and 817.5 ± 83.3 x10-6 mm2/s). The ADC mean values were significantly different between the P53abn group and the other groups (P = 0.000). The nomogram showed the highest discriminative ability to distinguish P53abn EC from other types (AUC: 0.859). CONCLUSION: Our results have suggested the quantitative MR characteristics (ADC values) derived from preoperative EC MRI to provide useful information in preoperatively determining P53abn cancer.

16.
Nat Genet ; 56(4): 637-651, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565644

ABSTRACT

Endometrial carcinoma remains a public health concern with a growing incidence, particularly in younger women. Preserving fertility is a crucial consideration in the management of early-onset endometrioid endometrial carcinoma (EEEC), particularly in patients under 40 who maintain both reproductive desire and capacity. To illuminate the molecular characteristics of EEEC, we undertook a large-scale multi-omics study of 215 patients with endometrial carcinoma, including 81 with EEEC. We reveal an unexpected association between exposome-related mutational signature and EEEC, characterized by specific CTNNB1 and SIGLEC10 hotspot mutations and disruption of downstream pathways. Interestingly, SIGLEC10Q144K mutation in EEECs resulted in aberrant SIGLEC-10 protein expression and promoted progestin resistance by interacting with estrogen receptor alpha. We also identified potential protein biomarkers for progestin response in fertility-sparing treatment for EEEC. Collectively, our study establishes a proteogenomic resource of EEECs, uncovering the interactions between exposome and genomic susceptibilities that contribute to the development of primary prevention and early detection strategies for EEECs.


Subject(s)
Carcinoma, Endometrioid , Endometrial Hyperplasia , Endometrial Neoplasms , Fertility Preservation , Proteogenomics , Humans , Female , Progestins/therapeutic use , Antineoplastic Agents, Hormonal , Endometrial Hyperplasia/drug therapy , Fertility Preservation/methods , Retrospective Studies , Carcinoma, Endometrioid/drug therapy , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
17.
IEEE Trans Biomed Eng ; PP2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38683702

ABSTRACT

OBJECTIVE: Intraoperative liver deformation poses a considerable challenge during liver surgery, causing significant errors in image-guided surgical navigation systems. This study addresses a critical non-rigid registration problem in liver surgery: the alignment of intrahepatic vascular trees. The goal is to deform the complete vascular shape extracted from preoperative Computed Tomography (CT) volume, aligning it with sparse vascular contour points obtained from intraoperative ultrasound (iUS) images. Challenges arise due to the intricate nature of slender vascular branches, causing existing methods to struggle with accuracy and vascular self-intersection. METHODS: We present a novel non-rigid sparse-dense registration pipeline structured in a coarse-to-fine fashion. In the initial coarse registration stage, we introduce a parametrization deformation graph and a Welsch function-based error metric to enhance convergence and robustness of non-rigid registration. For the fine registration stage, we propose an automatic curvature-based algorithm to detect and eliminate overlapping regions. Subsequently, we generate the complete vascular shape using posterior computation of a Gaussian Process Shape Model. RESULTS: Experimental results using simulated data demonstrate the accuracy and robustness of our proposed method. Evaluation results on the target registration error of tumors highlight the clinical significance of our method in tumor location computation. Comparative analysis against related methods reveals superior accuracy and competitive efficiency of our approach. Moreover, Ex vivo swine liver experiments and clinical experiments were conducted to evaluate the method's performance. CONCLUSION: The experimental results itasize the accurate and robust performance of our proposed method. SIGNIFICANCE: Our proposed non-rigid registration method holds significant application potential in clinical practice.

18.
Psychol Res Behav Manag ; 17: 1451-1461, 2024.
Article in English | MEDLINE | ID: mdl-38590759

ABSTRACT

Background: Diabetes distress (DD) is a negative emotion related to diabetes management and a predictor of depression; it affects diabetic retinopathy (DR) patients' quality of life and disease outcomes. The prevalence of DD was higher in patients undergoing surgery for DR. However, few studies have been conducted on DD in DR surgery patients. The present study aims to investigate the status of DD in DR surgery patients and identify factors associated with DD. Methods: Using a convenience sampling method, 210 DR surgery patients who were admitted to 2 tertiary-level hospitals in Wenzhou City (Zhejiang Province) and Zhengzhou City (Henan Province) from February to June 2023 were selected as research subjects. A questionnaire collecting demographic and disease-related information, the Diabetes Distress Scale, the Summary of Diabetes Self-Management Activities, the Family Care Index Scale, and the Social Support Rating Scale were used to collect data. Statistical analyses included descriptive statistics, t tests, ANOVAs, Pearson's correlation analyses and stepwise multiple linear regression. This study is reported according to the STROBE guidelines. Results: In total, 156 out of 210 (74.29%) DR surgery patients experienced DD, with an average score of 2.13±0.63. The results of the stepwise multiple regression analysis showed that residential location, employment status, self-management level, family support, and social support were significantly associated with DD. These variables accounted for 30.6% of the total variation in DD. Conclusions: DR surgery patients exhibit moderate levels of distress. Health care professionals should pay attention to DD in DR surgery patients and develop targeted interventions to improve the self-management ability of these patients, increase their family support and social support to reduce their DD levels.

19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 75-83, 2024 Jan 28.
Article in English, Chinese | MEDLINE | ID: mdl-38615169

ABSTRACT

OBJECTIVES: With the in-depth study of complement dysregulation, glomerulonephritis with dominant C3 has received increasing attention, with a variety of pathologic types and large differences in symptoms and prognosis between pathologic types. This study analyzes the clinical, pathological, and prognostic characteristics of different pathological types of glomerulonephritis with dominant C3, aiming to avoid misdiagnosis and missed diagnoses. METHODS: The clinical, pathological, and follow-up data of 52 patients diagnosed as glomerulonephritis with dominant C3 by renal biopsy from June 2013 to October 2022 were retrospectively analyzed. According to the clinical feature and results of pathology, 15 patients with post-infectious glomerulonephritis (PIGN) and 37 patients with of non-infectious glomerulonephritis (N-PIGN) were classified. N-PIGN subgroup analysis was performed, and 16 patients were assigned into a C3-alone-deposition group and 21 in a C3-dominant-deposition group, or 27 in a C3 glomerulopathy (C3G) group and 10 in a non-C3 nephropathy (N-C3G) group. RESULTS: The PIGN group had lower creatinine values (84.60 µmol/L vs179.62 µmol/L, P=0.001), lower complement C3 values (0.36 g/L vs0.74 g/L, P<0.001) at biopsy, and less severe pathological chronic lesions compared with the N-PIGN group. In the N-PIGN subgroup analysis, the C3-dominant-deposition group had higher creatinine values (235.30 µmol/L vs106.70 µmol/L, P=0.004) and higher 24-hour urine protein values (4 025.62 mg vs1 981.11 mg, P=0.037) than the C3-alone-deposition group. The prognosis of kidney in the PIGN group (P=0.049), the C3-alone-deposition group (P=0.017), and the C3G group (P=0.018) was better than that in the N-PIGN group, the C3-dominant-deposition group, and the N-C3G group, respectively. CONCLUSIONS: Glomerulonephritis with dominant C3 covers a variety of pathological types, and PIGN needs to be excluded before diagnosing C3G because of considerable overlap with atypical PIGN and C3G; in addition, the deposition of C1q complement under fluorescence microscope may indicate poor renal prognosis, and relevant diagnosis, treatment, and follow-up should be strengthened.


Subject(s)
Complement C3 , Glomerulonephritis , Humans , Creatinine , Retrospective Studies , Glomerulonephritis/diagnosis , Kidney
20.
Biomed Pharmacother ; 174: 116505, 2024 May.
Article in English | MEDLINE | ID: mdl-38574614

ABSTRACT

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Subject(s)
Canagliflozin , Cell Proliferation , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Canagliflozin/pharmacology , Cell Proliferation/drug effects , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Monocrotaline/adverse effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/drug effects , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...