Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 426
Filter
1.
BMC Geriatr ; 24(1): 487, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831261

ABSTRACT

BACKGROUND: Many older adult patients receive low-dose teicoplanin with varied regimens, leading to a lack of clarity on its optimal regimens and toxicity profiles in China. This study aimed to clarify these aspects by analyzing teicoplanin treatment concentrations and toxicities. METHODS: We included older adult patients administered teicoplanin at four tertiary hospitals in Beijing from June 2021 to July 2023, targeting a trough concentration (Cmin) ≥ 10 mg/L. Teicoplanin concentrations and toxicities were monitored dynamically. RESULTS: From 204 patients, we obtained 632 teicoplanin concentrations. Most patients (83.3%) received low-dose regimens. Suboptimal concentrations were found in 66.4% of patients within 7 days of treatment and 17.0% after 15 days. Cmin gradually increased with treatment duration and was influenced initially by creatinine and by both body weight and creatinine from days 8 to 14. The target concentration was achieved in 53.1%, 33.9%, 15.6%, and 5.5% of patients at 3, ≤ 7, 8-14, and ≥ 15 days after withdrawal, respectively. Slow elimination was associated with average Cmin and eGFR. Nephrotoxicity, hepatotoxicity, and thrombocytopenia occurred in 12.5%, 4.1%, and 31.5% of patients, respectively, without significant differences between concentrations. CONCLUSIONS: Most older adult patients were underdosed, indicating a need for dose adjustment. Given the varied risk factors for suboptimal concentrations in different treatment stages, a one-size-fits-all regimen was ineffective. We recommend an initial dose of 400 mg at 12-h intervals for the first three days, with subsequent doses from days 4 to 14 adjusted based on creatinine and body weight; after day 14, a maintenance dose of 200 mg daily is advised. TRIAL REGISTRATION: ChiCTR2100046811; 28/05/2021.


Subject(s)
Anti-Bacterial Agents , Dose-Response Relationship, Drug , Teicoplanin , Humans , Male , Aged , Female , Prospective Studies , Teicoplanin/administration & dosage , Teicoplanin/adverse effects , China/epidemiology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Aged, 80 and over , Middle Aged
2.
Front Cell Infect Microbiol ; 14: 1384284, 2024.
Article in English | MEDLINE | ID: mdl-38725451

ABSTRACT

Japanese spotted fever (JSF) is caused by Rickettsia japonica, mainly vectored by hard ticks. However, whether R. japonica can be transmitted by other arthropods remains unknown. Moreover, it is of interest to investigate whether other Rickettsia species cause spotted fever in endemic areas. In this study, a survey of Rickettsia species was performed in hematophagous arthropods (mosquitoes, tabanids, and ticks) from endemic areas for JSF in Hubei Province, central China. The results showed that the diversity and prevalence of Rickettsia species in mosquitoes are low, suggesting that mosquitoes may not be the vector of zoonotic Rickettsia species. A novel Rickettsia species showed a high prevalence (16.31%, 23/141) in tabanids and was named "Candidatus Rickettsia tabanidii." It is closely related to Rickettsia from fleas and mosquitoes; however, its pathogenicity in humans needs further investigation. Five Rickettsia species were identified in ticks. Rickettsia japonica, the agent of JSF, was detected only in Haemaphysalis longicornis and Haemaphysalis hystricis, suggesting that they may be the major vectors of R. japonica. Notably, two novel species were identified in H. hystricis ticks, one belonging to the spotted fever group and the other potentially belonging to the ancestral group. The latter one named "Candidatus Rickettsia hubeiensis" may provide valuable insight into the evolutionary history of Rickettsia.


Subject(s)
Phylogeny , Rickettsia , Spotted Fever Group Rickettsiosis , Animals , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , China/epidemiology , Spotted Fever Group Rickettsiosis/microbiology , Spotted Fever Group Rickettsiosis/epidemiology , Ticks/microbiology , Humans , Arthropods/microbiology , DNA, Bacterial/genetics , Culicidae/microbiology , RNA, Ribosomal, 16S/genetics , Endemic Diseases , Sequence Analysis, DNA , Siphonaptera/microbiology
3.
BMC Ophthalmol ; 24(1): 214, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760776

ABSTRACT

BACKGROUND: Endogenous endophthalmitis (EE) is a rare but highly destructive eye emergency secondary to systemic infection. Acute endophthalmitis can lead to irreversible vision impairment or even loss of the whole eye, unless being diagnosed and treated promptly. CASE PRESENTATION: This study reports three typical EE cases of endogenous endophthalmitis secondary to different severe systemic diseases. Patients were recruited from the Department of ophthalmology at Zhongnan hospital of Wuhan University and the Department of ophthalmology at the Second Affiliated Hospital of Fujian Medical University. Patients were followed up for up to 60 days. Among these cases, the eye symptoms is the initial manifestations while secondary to original different special systemic conditions. Patients have been treated under dynamically prompt response undergoing systemic treatment and eye treatment at the same time. Best corrected visual acuity were 20/40, 20/60 and light perception during follow-up evaluation. CONCLUSIONS: Our observation suggest that prompt identification and treatment could save patients' vision from EE.


Subject(s)
Endophthalmitis , Eye Infections, Bacterial , Visual Acuity , Humans , Endophthalmitis/diagnosis , Endophthalmitis/microbiology , Male , Female , Middle Aged , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/drug therapy , Visual Acuity/physiology , Aged , Anti-Bacterial Agents/therapeutic use , Adult
4.
J Colloid Interface Sci ; 671: 15-33, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38788421

ABSTRACT

The exploration of bifunctional electrocatalysts with high activity, stability, and economy is of great significance in promoting the development of water splitting. Herein, a dual active sites heterostructure NiCoS/NC was designed to be derived in situ on 3D N-doped porous carbon (NC) using gelatin as a nitrogen and carbon source. The characterization of experiments suggests that nanoflower-like Ni2CoS4 (abbreviated as NiCoS) was randomly distributed on the NC substrate, and the sheet-like NC formed a highly open porous network structure resembling a honeycomb, which provided more accessible active sites for electrolyte ions. In addition, the special nanostructures of the catalyst materials help to promote the surface reconstruction to the real active substance NiOOH/CoOOH, and the double active sites synergistically reduce the overpotential of OER and improve its kinetics. DFT (Density-functional theory) calculations reveal the electronic coupling of NiCoS/NC in atomic orbitals, modulation of electrons by the heterointerface and N-doping, and synergistic effect of dual active sites improving the inherent catalytic activity. The NiCoS/NC composite electrocatalyst exhibited a 177 mV small OER overpotential and a 132 mV small HER overpotential with Faraday efficiencies as high as 96 % and 98 % at 10 mA cm-2 current density. In the two-electrode system, it also requires only an ultra-low voltage of 1.52 V to achieve a 10 mA cm-2 current density, and it shows excellent long-term water splitting stability. This provides a new idea for the development of transition metal-based bifunctional electrocatalysts.

5.
Anal Chim Acta ; 1311: 342732, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38816157

ABSTRACT

BACKGROUND: Mercury is one of the most toxic heavy metal contaminants that can be harmful to human health through the food chain. Recently, the colorimetric detection of heavy metals based on nanozyme catalytic activity has received extensive interest due to the simplicity, signal visibility and suitability for in situ detection. However, the majority of these nanozymes that can be utilized for detecting mercury with high synthesis temperature and complicated synthesis methods, which limited their practical application. RESULTS: In this work, flower-like ZnO@Pt composites were simply synthesized at room temperature, the flower-like structure and the high electron mobility of ZnO endow ZnO@Pt with stronger peroxidase-like activity. Consequently, dual-mode (UV-vis and smartphone) colorimetric sensors were designed to detect Hg2+. In UV-vis mode, the Hg2+ concentration linear range was 10-400 nM, and the limit of detection (LOD) was 0.54 nM. In smartphone mode, the Hg2+ concentration linear range was 50-1250 nM, and the LOD was 29.8 nM. A parallel analysis in 3 real water samples was confirmed by ICP-MS, the results showed good correlations (R2 > 0.98), indicating the practical reliability of these sensors. SIGNIFICANCE: The novel flower-like ZnO@Pt composites with high stability, catalytic activity and Hg2+ response were simply synthesized at room temperature, simplifying the synthesis steps and reducing costs. The sensitivity of the developed colorimetric sensor in UV-vis mode was 3-145 times higher than that of the similar methods. The colorimetric sensor in smartphone mode broadened the detection range and improved the portability of Hg2+ detection. Thus, the dual-mode (UV-vis and smartphone) colorimetric sensors providing new detection modes for rapid monitoring of Hg2+ in environmental water.

6.
Langmuir ; 40(20): 10589-10599, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728854

ABSTRACT

Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Staphylococcus aureus , Titanium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Titanium/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Microbial Sensitivity Tests , Povidone/chemistry , Surface Properties
7.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38700925

ABSTRACT

Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.


Subject(s)
Paramyxoviridae Infections , Paramyxovirinae , Paramyxovirinae/genetics , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/veterinary , Mammals , China , Phylogeny , Genome, Viral , Host Specificity
8.
Nat Commun ; 15(1): 2936, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580644

ABSTRACT

Primary biliary cholangitis (PBC) is a cholestatic autoimmune liver disease characterized by autoreactive T cell response against intrahepatic small bile ducts. Here, we use Il12b-/-Il2ra-/- mice (DKO mice) as a model of autoimmune cholangitis and demonstrate that Cd8a knockout or treatment with an anti-CD8α antibody prevents/reduces biliary immunopathology. Using single-cell RNA sequencing analysis, we identified CD8+ tissue-resident memory T (Trm) cells in the livers of DKO mice, which highly express activation- and cytotoxicity-associated markers and induce apoptosis of bile duct epithelial cells. Liver CD8+ Trm cells also upregulate the expression of several immune checkpoint molecules, including PD-1. We describe the development of a chimeric antigen receptor to target PD-1-expressing CD8+ Trm cells. Treatment of DKO mice with PD-1-targeting CAR-T cells selectively depleted liver CD8+ Trm cells and alleviated autoimmune cholangitis. Our work highlights the pathogenic role of CD8+ Trm cells and the potential therapeutic usage of PD-1-targeting CAR-T cells.


Subject(s)
Autoimmune Diseases , Cholangitis , Liver Cirrhosis, Biliary , Mice , Animals , Liver Cirrhosis, Biliary/therapy , Immunotherapy, Adoptive , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , Cholangitis/therapy , Autoimmune Diseases/genetics
9.
Adv Mater ; : e2400169, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607696

ABSTRACT

Intrinsically safe sodium-ion batteries are considered as a promising candidate for large-scale energy storage systems. However, the high flammability of conventional electrolytes may pose serious safety threats and even explosions. Herein, a strategy of constructing a deep eutectic electrolyte is proposed to boost the safety and electrochemical performance of succinonitrile (SN)-based electrolyte. The strong hydrogen bond between S═O of 1,3,2-dioxathiolane-2,2-dioxide (DTD) and the α-H of SN endows the enhanced safety and compatibility of SN with Lewis bases. Meanwhile, the DTD participates in the inner Na+ sheath and weakens the coordination number of SN. The unique solvation configuration promotes the formation of robust gradient inorganic-rich electrode-electrolyte interphase, and merits stable cycling of half-cells in a wide temperature range, with a capacity retention of 82.8% after 800 cycles (25 °C) and 86.3% after 100 cycles (60 °C). Correspondingly, the full cells deliver tremendous improvement in cycling stability and rate performance.

10.
Environ Sci Pollut Res Int ; 31(21): 30793-30805, 2024 May.
Article in English | MEDLINE | ID: mdl-38613759

ABSTRACT

Excessive use of synthetic insecticides has resulted in environmental contamination and adverse effects on humans and other non-target organisms. Entomopathogenic fungi offer eco-friendly alternatives; however, their application for pest control requires significant advancement owing to limitations like slow killing time and effectiveness only when applied in higher amounts, whereas exposure to UV radiation, high temperature, and humidity can also reduce their viability and shelf-life. The nanoparticles synthesized using fungal extracellular extracts provide a new approach to use fungal pathogens. Our study focused on the synthesis of Metarhizium anisopliae-based silver nanoparticles (AgNPs) and evaluation of their efficiency on various physiological and behavioral parameters of the mosquito Aedes aegypti. The synthesis, size (27.6 d.nm, PDI = 0.209), zeta potential (- 24.3 mV), and shape of the AgNPs were determined through dynamic light scattering, scanning and transmission electron microscopic, and UV-visual spectroscopic analyses (432 nm). Our results showed significantly reduced survival (100% decrease in case of 3.2 and 1.8 µL/cm2 volumes, and 60% decrease in case of 0.8 µL/cm2 volume), phenoloxidase activity (t = 39.91; p = 0.0001), and gut microbiota, with increased oxidative stress and cell apoptosis in AgNPs-challenged mosquitoes. Furthermore, the AgNPs-exposed mosquitoes presented a concentration-specific decrease in flight locomotor activity (F = 17.312; p < 0.0001), whereas no significant changes in antifungal activity, self-grooming frequencies, or time spent were found. These findings enhance our understanding of mosquito responses to AgNPs exposure, and offer a more efficient mosquito control strategy using entomopathogenic fungi.


Subject(s)
Aedes , Insecticides , Metal Nanoparticles , Silver , Animals , Aedes/drug effects , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Insecticides/chemistry , Metarhizium , Mosquito Control/methods , Fungi
11.
J Vasc Interv Radiol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663514

ABSTRACT

PURPOSE: To examine the natural history of splenic artery aneurysms (SAAs) at a single institution and assess the effect of patient factors and aneurysm characteristics on aneurysm growth. MATERIALS AND METHODS: This single-center retrospective study included patients with SAAs who underwent serial imaging over 30 years (1990-2020). Data regarding patient demographics and aneurysm characteristics were collected. The variables contributing to aneurysm growth were assessed using nonparametric tests for continuous variables and chi-square test for categorical variables. Multivariable linear regression was performed using aneurysm growth rate as a continuous dependent variable. RESULTS: A total of 132 patients were included in this study. The median maximum diameter of the SAAs was 15.8 mm (range, 4.0-50.0 mm). Growth over time was observed in 39% of the aneurysms, whereas the remaining 61% were stable in size. Of aneurysms that increased in size, the median aneurysm growth rate was 0.60 mm/y (range, 0.03-5.00 mm/y). Maximum aneurysm diameter of >2 cm and the presence of >50% mural thrombus were significant positive predictors for aneurysm growth (P = .020 and P = .022, respectively). Greater than 50% rim calcification was a significant negative predictor for aneurysm growth (P = .009) in multivariate analysis. CONCLUSIONS: A larger baseline SAA size, presence of mural thrombus, and lack of rim calcification are associated with increased aneurysm growth rate.

12.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612943

ABSTRACT

Clear cell renal carcinoma (ccRCC), the most common subtype of renal cell carcinoma, has the high heterogeneity of a highly complex tumor microenvironment. Existing clinical intervention strategies, such as target therapy and immunotherapy, have failed to achieve good therapeutic effects. In this article, single-cell transcriptome sequencing (scRNA-seq) data from six patients downloaded from the GEO database were adopted to describe the tumor microenvironment (TME) of ccRCC, including its T cells, tumor-associated macrophages (TAMs), endothelial cells (ECs), and cancer-associated fibroblasts (CAFs). Based on the differential typing of the TME, we identified tumor cell-specific regulatory programs that are mediated by three key transcription factors (TFs), whilst the TF EPAS1/HIF-2α was identified via drug virtual screening through our analysis of ccRCC's protein structure. Then, a combined deep graph neural network and machine learning algorithm were used to select anti-ccRCC compounds from bioactive compound libraries, including the FDA-approved drug library, natural product library, and human endogenous metabolite compound library. Finally, five compounds were obtained, including two FDA-approved drugs (flufenamic acid and fludarabine), one endogenous metabolite, one immunology/inflammation-related compound, and one inhibitor of DNA methyltransferase (N4-methylcytidine, a cytosine nucleoside analogue that, like zebularine, has the mechanism of inhibiting DNA methyltransferase). Based on the tumor microenvironment characteristics of ccRCC, five ccRCC-specific compounds were identified, which would give direction of the clinical treatment for ccRCC patients.


Subject(s)
Carcinoma, Renal Cell , Deep Learning , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Endothelial Cells , Algorithms , Single-Cell Analysis , Antimetabolites , DNA Modification Methylases , Drug Discovery , Kidney Neoplasms/drug therapy , DNA , Tumor Microenvironment
13.
Chem Sci ; 15(13): 4833-4838, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550702

ABSTRACT

Sodium metal batteries have attracted increasing interest recently, but suffer from severe dendrite growth caused by uneven Na plating/stripping behavior, which may result in the piercing of the membrane, with short circuiting and even cause explosions. Herein, a conductive and sodiophilic Ag coating layer is introduced to regulate Na deposition behaviors for highly reversible sodium metal batteries. Ag coated Zn foil with enhanced sodiophilicity, rapid Na+ transfer kinetics and superior electronic conductivity guarantee the homogenized Na+ ion and electric field distribution. This enables remarkably low overpotentials and uniform Na plating/stripping behavior with ultrahigh Coulombic efficiency of 99.9% during 500 cycles. As expected, the enhanced electrochemical performance of the anode-less battery and anode-free battery coupled with Prussian blue is achieved with the help of Ag coating. This work emphasizes the role of the conductive and sodiophilic coating layer in regulating the Na deposition behaviors for highly reversible sodium metal batteries.

14.
Lipids Health Dis ; 23(1): 85, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515137

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is a prevalent hereditary disease that can cause aberrant cholesterol metabolism. In this study, we confirmed that c.415G > A in low-density lipoprotein receptor (LDLR), an FH-related gene, is a pathogenic variant in FH by in silico analysis and functional experiments. METHODS: The proband and his family were evaluated using the diagnostic criteria of the Dutch Lipid Clinic Network. Whole-exome and Sanger sequencing were used to explore and validate FH-related variants. In silico analyses were used to evaluate the pathogenicity of the candidate variant and its impact on protein stability. Molecular and biochemical methods were performed to examine the effects of the LDLR c.415G > A variant in vitro. RESULTS: Four of six participants had a diagnosis of FH. It was estimated that the LDLR c.415G > A variant in this family was likely pathogenic. Western blotting and qPCR suggested that LDLR c.415G > A does not affect protein expression. Functional studies showed that this variant may lead to dyslipidemia by impairing the binding and absorption of LDLR to low-density lipoprotein ( LDL). CONCLUSION: LDLR c.415G > A is a pathogenic variant in FH; it causes a significant reduction in LDLR's capacity to bind LDL, resulting in impaired LDL uptake. These findings expand the spectrum of variants associated with FH.


Subject(s)
Hyperlipoproteinemia Type II , Humans , Phenotype , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/diagnosis , Receptors, LDL/genetics , Receptors, LDL/metabolism , Lipoproteins, LDL/genetics , Mutation , Proprotein Convertase 9/genetics
15.
Angew Chem Int Ed Engl ; 63(21): e202402342, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38491787

ABSTRACT

Zn deposition with a surface-preferred (002) crystal plane has attracted extensive attention due to its inhibited dendrite growth and side reactions. However, the nucleation and growth of the Zn(002) crystal plane are closely related to the interfacial properties. Herein, oriented growth of Zn(002) crystal plane is realized on Ag-modified surface that is directly visualized by in situ atomic force microscopy. A solid solution HCP-Zn (~1.10 at. % solubility of Ag, 30 °C) is formed on the Ag coated Zn foil (Zn@Ag) and possesses the same crystal structure as Zn to reduce its nucleation barrier caused by their lattice mismatch. It merits oriented Zn deposition and corrosion-resistant surface, and presents long cycling stability in symmetric cells and full cells coupled with V2O5 cathode. This work provides insights into interfacial regulation of Zn anodes for high-performance aqueous zinc metal batteries.

16.
Bioresour Technol ; 399: 130588, 2024 May.
Article in English | MEDLINE | ID: mdl-38490460

ABSTRACT

In this work, a novel biofilm-based fermentation of Beauveria bassiana was employed to convert R-2- phenoxypropionic acid (R-PPA) to R-2-(4-hydroxyphenoxy) propionic acid (R-HPPA). The biofilm culture model of Beauveria bassiana produced a significantly higher R-HPPA titer than the traditional submerged fermentation method. Mannitol dosage, tryptone dosage, and initial pH were the factors that played a significant role in biofilm formation and R-HPPA synthesis. Under the optimal conditions, the maximum R-HPPA titer and productivity approached 22.2 g/L and 3.2 g/(L·d), respectively. A two-stage bioreactor combining agitation and static incubation was developed to further increase R-HPPA production. The process was optimized to achieve 100 % conversion of R-PPA, with a maximum R-HPPA titer of 50 g/L and productivity of 3.8 g/(L·d). This newly developed biofilm-based two-stage fermentation process provides a promising strategy for the industrial production of R-HPPA and related hydroxylated aromatic compounds.


Subject(s)
Beauveria , Fermentation , Beauveria/chemistry , Bioreactors , Propionates
17.
JACC Cardiovasc Interv ; 17(4): 461-470, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38340104

ABSTRACT

BACKGROUND: Quantitative flow ratio (QFR) is a method for evaluating fractional flow reserve without the use of an invasive coronary pressure wire or pharmacological hyperemic agent. OBJECTIVES: The aim of this study was to investigate the prognostic implications of QFR and plaque characteristics in patients who underwent intravascular ultrasound (IVUS)-guided treatment for intermediate lesions. METHODS: Among the IVUS-guided strategy group in the FLAVOUR (Fractional Flow Reserve and Intravascular Ultrasound for Clinical Outcomes in Patients with Intermediate Stenosis) trial, vessels suitable for QFR analysis were included in this study. High-risk features were defined as low QFR (≤0.90), quantitative high-risk plaque characteristics (qn-HRPCs) (minimal lumen area ≤3.5 mm2, or plaque burden ≥70%), and qualitative high-risk plaque characteristics (ql-HRPCs) (attenuated plaque, positive remodeling, or plaque rupture) assessed using IVUS. The primary clinical endpoint was target vessel failure (TVF), defined as a composite of cardiac death, target vessel myocardial infarction, and target vessel revascularization. RESULTS: A total of 415 (46.1%) vessels could be analyzable for QFR. The numbers of qn-HRPCs and ql-HRPCs increased with decreasing QFR. Among deferred vessels, those with 3 high-risk features exhibits a significantly higher risk of TVF compared with those with ≤2 high-risk features (12.0% vs 2.7%; HR: 4.54; 95% CI: 1.02-20.29). CONCLUSIONS: Among the IVUS-guided deferred group, vessels with qn-HRPC and ql-HRPC with low QFR (≤0.90) exhibited a significantly higher risk for TVF compared with those with ≤2 features. Integrative assessment of angiography-derived fractional flow reserve and anatomical and morphological plaque characteristics is recommended to improve clinical outcomes in patients undergoing IVUS-guided deferred treatment.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Plaque, Atherosclerotic , Humans , Prognosis , Coronary Angiography , Treatment Outcome , Coronary Vessels/diagnostic imaging , Ultrasonography, Interventional/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Predictive Value of Tests , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/therapy
18.
Sci Total Environ ; 918: 170507, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38309354

ABSTRACT

Conveyance and modification of carbon-isotope signals within the karst system remain difficult to constrain, due to the complexity of interactions between multiple components, including precipitation, bedrock, soil, atmosphere, and biota. Cave monitoring is thus critical to understanding both their transport in the karst system and dependence on local hydroclimatic conditions. Jiguan Cave, located in Funiu Mountain in central China, is representative of karst tourist caves with relatively thin epikarst zone. We conducted a comprehensive monitoring program of cave climate from 2018 to 2021 and measured δ13C during 2021 in monthly and heavy-rainfall samples of soil CO2, cave CO2, cave water (drip water and underground river), and underground river outlet. Our results demonstrate synchronous variations between CO2 concentration and δ13CCO2 in both soil and cave air on seasonal time scales. Cave pCO2 and carbon-isotope composition further exhibited a high sensitivity to human respiration with fluctuations of ~2000-3000 ppm within 4 days during the cave closure period in July 2021 without tourists. 13C-depleted isotopic signal of cave air in summer is the mixture of human respiration and soil CO2 which varies as a function of regional hydrological conditions of the summer monsoon during the rainy season with high temperatures and humidity. However, respired CO2 from the overlying soil was expected to be the only principal source of the cave CO2 when the anthropogenic CO2 source was removed. The high seasonal amplitude of cave air δ13CCO2 reflects ventilation dynamics, which leads to a prominent contribution from the external atmosphere during winter. Intriguingly, although the δ13C signal reflects complex vertical processes in the vertical karst profile, a heavy summer rainfall event was related to anomalously high δ13C values of cave water that can be utilized to interpret rainfall intensity and regional hydroclimate.

19.
Diabetol Metab Syndr ; 16(1): 46, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365853

ABSTRACT

AIMS: To estimate the effects of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) on proteinuria and oxidative stress expression in type 2 diabetes patients. MATERIALS AND METHODS: 68 patients with type 2 diabetes mellitus (T2DM) were divided into three groups according urinary albumin-to-creatinine ratio (UACR), including T2DM with non-albuminuria group (UACR < 30 mg/g), T2DM with microalbuminuria group (30 ≤ UACR ≤ 300 mg/g), T2DM with macroalbuminuria group (UACR>300 mg/g). They all received SGLT2 inhibitors (SGLT2i) treatment for 12 weeks. The expression of advanced glycation end products (AGEs) in plasma and 8-hydroxy-2-deoxyguanosine (8-OHdG) in urine were measured as indications of oxidative stress. The 24-hour urine samples were collected to measure the concentration of proteinuria and 8-OHdG before and after 12 weeks SGLT2i treatment. Plasma renin activity (PRA), angiotensin II (Ang II) and Aldosterone (ALD) were measured to evaluate renin angiotensin aldosterone system (RASS) levels. RESULTS: After 12 weeks SGLT2 inhibitors treatment, the median values of 24-hour proteinuria decreased in macroalbuminuria compared to baseline (970 vs. 821 mg/d, P = 0.006). The median values of AGEs and 8-OHdG decreased in microalbuminuria and macroalbuminuria groups when compared to baseline, AGEs (777 vs. 136 ug/ml, P = 0.003) and (755 vs. 210 ug/ml, P = 0.001), 8-OHdG (8.00 vs. 1.88 ng/ml, P = 0.001) and (11.18 vs. 1.90 ng/ml, P < 0.001), respectively. Partial correlations showed that 8-OHdG were relevant to the baseline 24-h proteinuria (r = 0.389, p = 0.001), the reduction of OHdG (Δ8-OHdG) were positively correlated with the decrease of 24-h proteinuria (Δ24-h proteinuria) after 12 weeks of SGLT2i treatment (r = 0.283, P = 0.031). There was no significant correlation between 24-h proteinuria and AGEs in baseline (r = -0.059, p = 0.640) as well as between ΔAGEs and Δ24-h proteinuria (r = 0.022, p = 0.872) after12 weeks of SGLT2i treatment in T2DM patients. CONCLUSIONS: SGLT2i may reduce proteinuria in diabetic nephropathy patients, potentially by inhibiting renal oxidative stress, but not through the AGEs pathway and does not induce RAAS activation. TRIAL REGISTRATION: This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.

20.
Expert Rev Hematol ; 17(1-3): 47-54, 2024.
Article in English | MEDLINE | ID: mdl-38319240

ABSTRACT

INTRODUCTION: Immunomodulatory drugs (IMiDs) are widely used in the management of newly diagnosed and relapsed/refractory multiple myeloma patients. These agents show their potential effect on myeloma bone disease (MBD), including inhibition of osteoclasts activity and effects on osteoblasts differentiation. It is unclear whether these effects are direct, which may have an impact on bone formation markers when combined with proteasome inhibitors. AREAS COVERED: This review summarizes the available evidence on the role of IMiDs in microenvironment regulation and their potential effects on bone metabolism. The literature search methodology consisted of searching PubMed for basic and clinical trials using medical subject terms. Included articles were screened and evaluated by the coauthors of this review. EXPERT OPINION: As a therapeutic option, IMiDs directly affect preosteoblast/osteoclast differentiation. The combination of proteasome inhibitors may counteract the short-term up-regulation of osteogenic activity markers, and therefore intravenous zoledronic acid is recommended, however, obtaining a more significant myeloma response will have a long-term positive impact on myeloma bone disease.


Subject(s)
Bone Diseases , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Immunomodulating Agents , Osteoclasts , Bone Diseases/drug therapy , Bone Diseases/etiology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...