Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Transl Med ; 22(1): 458, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750454

ABSTRACT

BACKGROUND: Corneal injuries, often leading to severe vision loss or blindness, have traditionally been treated with the belief that limbal stem cells (LSCs) are essential for repair and homeostasis, while central corneal epithelial cells (CCECs) were thought incapable of such repair. However, our research reveals that CCECs can fully heal and maintain the homeostasis of injured corneas in rats, even without LSCs. We discovered that CXCL14, under PAX6's influence, significantly boosts the stemness, proliferation, and migration of CCECs, facilitating corneal wound healing and homeostasis. This finding introduces CXCL14 as a promising new drug target for corneal injury treatment. METHODS: To investigate the PAX6/CXCL14 regulatory axis's role in CCECs wound healing, we cultured human corneal epithelial cell lines with either increased or decreased expression of PAX6 and CXCL14 using adenovirus transfection in vitro. Techniques such as coimmunoprecipitation, chromatin immunoprecipitation, immunofluorescence staining, western blot, real-time PCR, cell colony formation, and cell cycle analysis were employed to validate the axis's function. In vivo, a rat corneal epithelial injury model was developed to further confirm the PAX6/CXCL14 axis's mechanism in repairing corneal damage and maintaining corneal homeostasis, as well as to assess the potential of CXCL14 protein as a therapeutic agent for corneal injuries. RESULTS: Our study reveals that CCECs naturally express high levels of CXCL14, which is significantly upregulated by PAX6 following corneal damage. We identified SDC1 as CXCL14's receptor, whose engagement activates the NF-κB pathway to stimulate corneal repair by enhancing the stemness, proliferative, and migratory capacities of CCECs. Moreover, our research underscores CXCL14's therapeutic promise for corneal injuries, showing that recombinant CXCL14 effectively accelerates corneal healing in rat models. CONCLUSION: CCECs play a critical and independent role in the repair of corneal injuries and the maintenance of corneal homeostasis, distinct from that of LSCs. The PAX6/CXCL14 regulatory axis is pivotal in this process. Additionally, our research demonstrates that the important function of CXCL14 in corneal repair endows it with the potential to be developed into a novel therapeutic agent for treating corneal injuries.


Subject(s)
Cell Proliferation , Chemokines, CXC , Corneal Injuries , Epithelium, Corneal , PAX6 Transcription Factor , Wound Healing , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Animals , Corneal Injuries/metabolism , Corneal Injuries/pathology , Humans , Chemokines, CXC/metabolism , Chemokines, CXC/genetics , Epithelium, Corneal/pathology , Epithelium, Corneal/metabolism , Rats, Sprague-Dawley , Epithelial Cells/metabolism , Rats , Cell Movement , Male , Cell Line
2.
Nature ; 625(7993): 148-156, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37993710

ABSTRACT

The continuing emergence of SARS-CoV-2 variants highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by vaccination based on the ancestral (hereafter referred to as WT) strain would compromise the antibody response to Omicron-based boosters1-5. Vaccination strategies to counter immune imprinting are critically needed. Here we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. In mice, the efficacy of single Omicron boosting is heavily limited when using variants that are antigenically distinct from WT-such as the XBB variant-and this concerning situation could be mitigated by a second Omicron booster. Similarly, in humans, repeated Omicron infections could alleviate WT vaccination-induced immune imprinting and generate broad neutralization responses in both plasma and nasal mucosa. Notably, deep mutational scanning-based epitope characterization of 781 receptor-binding domain (RBD)-targeting monoclonal antibodies isolated from repeated Omicron infection revealed that double Omicron exposure could induce a large proportion of matured Omicron-specific antibodies that have distinct RBD epitopes to WT-induced antibodies. Consequently, immune imprinting was largely mitigated, and the bias towards non-neutralizing epitopes observed in single Omicron exposures was restored. On the basis of the deep mutational scanning profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated that these mutations could further boost the immune-evasion capability of XBB.1.5 while maintaining high ACE2-binding affinity. Our findings suggest that the WT component should be abandoned when updating COVID-19 vaccines, and individuals without prior Omicron exposure should receive two updated vaccine boosters.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunologic Memory , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Immunologic Memory/immunology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Mutation
3.
PLoS Pathog ; 19(12): e1011868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38117863

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) XBB lineages have achieved dominance worldwide and keep on evolving. Convergent evolution of XBB lineages on the receptor-binding domain (RBD) L455F and F456L is observed, resulting in variants with substantial growth advantages, such as EG.5, FL.1.5.1, XBB.1.5.70, and HK.3. Here, we show that neutralizing antibody (NAb) evasion drives the convergent evolution of F456L, while the epistatic shift caused by F456L enables the subsequent convergence of L455F through ACE2 binding enhancement and further immune evasion. L455F and F456L evade RBD-targeting Class 1 public NAbs, reducing the neutralization efficacy of XBB breakthrough infection (BTI) and reinfection convalescent plasma. Importantly, L455F single substitution significantly dampens receptor binding; however, the combination of L455F and F456L forms an adjacent residue flipping, which leads to enhanced NAbs resistance and ACE2 binding affinity. The perturbed receptor-binding mode leads to the exceptional ACE2 binding and NAb evasion, as revealed by structural analyses. Our results indicate the evolution flexibility contributed by epistasis cannot be underestimated, and the evolution potential of SARS-CoV-2 RBD remains high.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19 Serotherapy , Antibodies, Neutralizing
7.
Nature ; 614(7948): 521-529, 2023 02.
Article in English | MEDLINE | ID: mdl-36535326

ABSTRACT

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Evolution, Molecular , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Breakthrough Infections/immunology , Breakthrough Infections/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Serotherapy , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Protein Domains/genetics , Protein Domains/immunology , Antigenic Drift and Shift/immunology , Mutation
8.
Dig Dis Sci ; 68(4): 1260-1268, 2023 04.
Article in English | MEDLINE | ID: mdl-36346489

ABSTRACT

BACKGROUND AND AIMS: Several studies showed muscularis macrophages (MMφ) are associated with GI motility disorders. The purpose of this study was to preliminary explore the association between MMφ and achalasia. METHODS: Tissue samples of the lower esophageal sphincter (LES) high-pressure zone were obtained from 27 achalasia patients and 10 controls. Immunohistochemistry for MMφ, interstitial cells of Cajal (ICC), neuronal nitric oxide synthase (nNOS), and glial cells were conducted. Histological characteristics were compared between groups, and correlation analysis was performed. RESULTS: Fewer ICC was found in achalasia compared with controls (P = 0.018), and the level of M1 macrophages was higher than that in controls no matter in terms of the number or the proportion of M1(P = 0.026 for M1 and 0.037 for M1/MMφ). Statistical differences were found between two groups in terms of proportion of M2 and ratio of M1 to M2 (P = 0.048 for M2/ MMφ and < 0.001 for M1/M2). For the correlation analysis, significant correlations were detected between levels of nNOS, ICC, and glial cells in patients with achalasia (P = 0.026 for nNOS and ICC, 0.001 for nNOS and glial cells, 0.019 for ICC and glial cells). There were significant correlations between M2/MMφ and levels of ICC (P = 0.019), glial cells (P = 0.004), and nNOS (P = 0.135). CONCLUSION: Patients with achalasia had a higher level of M1/M2 ratio in LES and significant correlations were found between M2/MMφ and numbers of ICC and glial cells, which suggested that MMφ were probably associated with occurrence and development of achalasia.


Subject(s)
Esophageal Achalasia , Interstitial Cells of Cajal , Humans , Esophageal Achalasia/pathology , Interstitial Cells of Cajal/pathology , Macrophages/pathology , Immunohistochemistry , Neuroglia/pathology
9.
Front Neurol ; 14: 1328896, 2023.
Article in English | MEDLINE | ID: mdl-38187143

ABSTRACT

Objective: To compare the repositioning effect of the modified Epley maneuver and the traditional Epley maneuver for posterior semicircular canal benign paroxysmal positional vertigo (PC-BPPV). Methods: Sixty-five patients with unilateral PC-BPPV were randomly divided into two groups. The control group received the traditional Epley maneuver, while the experimental group received the modified Epley maneuver, which prolonged the time in the healthy side lying position and the final bowing position. The number of successful repositions after one, two, and three attempts and the total number of successful repositions were recorded and compared between the two groups. A BPPV virtual simulation model was used to analyze the mechanism of the modified Epley maneuver. Results: The first repositioning success rate of the experimental group was significantly higher than that of the control group (85% vs. 63%, p = 0.040). The experimental group achieved 100% repositioning success rate after two attempts, while the control group needed three attempts to reach 86% repositioning success rate. Four cases in the control group experienced canal switching during the repositioning process, while none in the experimental group did. The BPPV virtual simulation model showed that the modified Epley maneuver could facilitate the passage of otoliths through the posterior arm of the posterior semicircular canal, especially through the location of obstruction. Conclusion: The modified Epley maneuver is more effective than the traditional Epley maneuver in improving the single repositioning success rate and reducing the canal switching rate for PC-BPPV. This study provides a new option for the treatment of BPPV.

10.
Signal Transduct Target Ther ; 7(1): 377, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36379915

ABSTRACT

SARS-CoV-2 Omicron variant infection generally gives rise to asymptomatic to moderate COVID-19 in vaccinated people. The immune cells can be reprogrammed or "imprinted" by vaccination and infections to generate protective immunity against subsequent challenges. Considering the immune imprint in Omicron infection is unclear, here we delineate the innate immune landscape of human Omicron infection via single-cell RNA sequencing, surface proteome profiling, and plasma cytokine quantification. We found that monocyte responses predominated in immune imprints of Omicron convalescents, with IL-1ß-associated and interferon (IFN)-responsive signatures with mild and moderate symptoms, respectively. Low-density neutrophils increased and exhibited IL-1ß-associated and IFN-responsive signatures similarly. Mild convalescents had increased blood IL-1ß, CCL4, IL-9 levels and PI3+ neutrophils, indicating a bias to IL-1ß responsiveness, while moderate convalescents had increased blood CXCL10 and IFN-responsive monocytes, suggesting durative IFN responses. Therefore, IL-1ß- or IFN-responsiveness of myeloid cells may indicate the disease severity of Omicron infection and mediate post-COVID conditions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cytokines , Immunity, Innate/genetics
12.
Nature ; 608(7923): 593-602, 2022 08.
Article in English | MEDLINE | ID: mdl-35714668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Epitopes, B-Lymphocyte , Immune Tolerance , Mutation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
13.
J Clin Gastroenterol ; 56(5): 393-400, 2022.
Article in English | MEDLINE | ID: mdl-33973961

ABSTRACT

BACKGROUND: Lyon Consensus altered the previous understanding of endoscopic gastroesophageal reflux disease (GERD) and pointed out that only high-grade reflux esophagitis (RE) [Los Angeles (LA) grades C or D], Barrett's esophagus or peptic stricturing were considered confirmatory evidence for GERD but low-grade RE (LA grades A or B) was regarded as suspected GERD. We aimed to summarize the possible relationship between gastroesophageal flap valve (GEFV) and endoscopic GERD according to Lyon Consensus using meta-analysis of studies done in Asia. MATERIALS AND METHODS: Comprehensive searches of PubMed, WOS, Embase, SinoMed, and CNKI databases were completed to identify eligible studies published before September 22, 2019. A total of 237 articles have been reviewed and 2 reviewers independently evaluated the eligibility for inclusion, extracted, and analyzed the statistical data. The pooled risk ratios (RRs) with 95% confidence intervals (CI) were measured for the association. Random-effects models were used when observing significant heterogeneity. RESULTS: A total of 15 studies were included and we found that abnormal GEFV (III and IV) could be associated with RE and the correlation become stronger as the grade increases (RE-A vs. controls-RR: 2.186, 95% CI: 1.560-3.064, P<0.001; RE-B vs. RE-A-RR: 1.268, 95% CI: 1.128-1.425, P<0.001; RE-C vs. RE-B-RR: 1.181, 95% CI: 1.000-1.395, P=0.049; RE-D vs. RE-C-RR: 1.471, 95% CI: 1.151-1.879, P=0.002). Both suspected GERD (RR: 2.400, 95% CI: 1.761-3.271, P<0.001) and endoscopic GERD (RR: 1.388, 95% CI: 1.127-1.711, P=0.002) were related to abnormal GEFV. CONCLUSION: Abnormal GEFV could provide useful information for reflux conditions, but it could not distinguish confirmatory GERD from low-grade RE under the upper endoscopy.


Subject(s)
Barrett Esophagus , Esophagitis, Peptic , Gastroesophageal Reflux , Asian People , Esophagitis, Peptic/diagnosis , Esophagitis, Peptic/etiology , Esophagogastric Junction , Gastroesophageal Reflux/diagnosis , Humans
14.
Theranostics ; 11(15): 7425-7438, 2021.
Article in English | MEDLINE | ID: mdl-34158858

ABSTRACT

The lack of tumor specific antigens (TSA) and the immune tolerance are two major obstacles for the immunotherapy of cancer. Current immune checkpoint inhibitors (ICIs) show clinical responses in only limited subsets of cancer patients, which, to some extent, depends on the mutation load of tumor cells that may generate neoantigens. Here, we aimed to generate a neoantigen MDP to exhibit stronger anti-tumor efficacy. Methods: In this study, we utilized chemically modified sialic acid precursor tetra acetyl-N-azidoacetyl-mannosamine (AC4ManNAZ) to engineer the glycoproteins on the membranes of tumor cells for the covalent ligation of hapten adjuvant Pam3CSK4 in vivo, which eventually generated a neoantigen, i.e., ManNAZ-DBCO-Pam3CSK4 (MDP), on tumor cells. The high labeling efficiency, relatively specific biodistribution in tumor tissues and the anti-tumor efficacy were confirmed in the syngeneic murine models of the breast cancer and the lung cancer. Results: The generation of MDP neoantigen in tumor-bearing mice significantly evoked both the humoral and the T-cell-dependent antitumor immune responses, resulting in a strong inhibition on the growth of the breast cancer and the lung cancer allografts and significantly prolonged survival of tumor-bearing mice. Interestingly, MDP neoantigen was able to dramatically increase the sensitivity of cancer cells to ICIs and greatly enhance the anti-tumor efficacy in the murine models of both breast cancer and the lung cancer, which showed no or low responses to the immunotherapy with anti-PD1 antibody alone. Conclusions: We developed a simple metabolic glycoengineering method to artificially generate neoantigens on tumor cells to enhance tumor cell immunogenicity, which is able to significantly improve the response and the clinical outcome of ICIs.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Glycoproteins , Lipopeptides , Mammary Neoplasms, Experimental , Animals , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , Antigens, Neoplasm/pharmacology , Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Cell Line, Tumor , Female , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/pharmacology , Lipopeptides/chemistry , Lipopeptides/immunology , Lipopeptides/pharmacology , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/therapy , Mice
15.
Theranostics ; 11(14): 6950-6965, 2021.
Article in English | MEDLINE | ID: mdl-34093864

ABSTRACT

Rationale: Psychological stress has been linked to cancer development and resistance to therapy by many epidemiological and clinical studies. Stress-induced immunosuppressive microenvironment by stress hormones, in particular glucocorticoids, has been extensively studied. However, the impacts of other stress-related neurotransmitters, such as serotonin (5-hydroxytryptamine, 5-HT), on cancer development just start to be revealed. Here, we aimed to identify novel neurotransmitters involved in stress-induced growth and dissemination of ovarian cancer (OC) and reveal the major underlying signaling pathway and the therapeutic significance. Methods: Through a genome-wide CRISPR/Cas9 knockout screen in the murine orthotopic model of ovarian carcinoma (OC), we identified candidate genes regulating the peritoneal dissemination of OC. Among them, we picked out HTR1E, one member of 5-HT receptor family specifically expressed in the ovary and endometrium in addition to brain. The correlation of HTR1E expression with OC progression was analyzed in OC patient specimen by quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot, and immunohistochemistry (IHC). Gain-of-function and loss-of-function analyses were performed to explore the functions of 5-HT/HTR1E signaling in OC growth and dissemination in vitro and in vivo. In addition, we investigated the therapeutic values of HTR1E specific agonist and small molecular inhibitors against HTR1E downstream factor SRC in a stressed murine OC xenograft model. Results: In OC patients, the HTR1E expression is dramatically decreased in peritoneal disseminated OC cells, which correlates with poor clinical outcome. Silence of HTR1E in OC cells greatly promotes cell proliferation and epithelial mesenchymal transition (EMT) by the activation of SRC-mediated downstream signaling pathways. Furthermore, chronic stress results in significantly decreased serotonin in the ovary and the enhanced OC growth and peritoneal dissemination in mice, which can be strongly inhibited by specific HTR1E agonist or the SRC inhibitor. Conclusions: We discovered the essential role of serotonin/HTR1E signaling in preventing the chronic psychological stress-promoted progression of OC, suggesting the potential therapeutic value of the HTR1E specific agonist and the SRC inhibitor for OC patients who are suffering from psychological stress.


Subject(s)
Adenocarcinoma/metabolism , Ovarian Neoplasms/metabolism , Receptors, Serotonin, 5-HT1/metabolism , Receptors, Serotonin/metabolism , Serotonin/pharmacology , Stress, Physiological , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Behavior Rating Scale , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/ethics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Progression , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Genetic Testing , Humans , Immunohistochemistry , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasm Invasiveness/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , RNA-Seq , Real-Time Polymerase Chain Reaction , Receptors, Serotonin/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Stress, Physiological/drug effects , Stress, Physiological/genetics , Xenograft Model Antitumor Assays
16.
Elife ; 102021 06 11.
Article in English | MEDLINE | ID: mdl-34114949

ABSTRACT

Transcoelomic spread of cancer cells across the peritoneal cavity occurs in most initially diagnosed ovarian cancer (OC) patients and accounts for most cancer-related death. However, how OC cells interact with peritoneal stromal cells to evade the immune surveillance remains largely unexplored. Here, through an in vivo genome-wide CRISPR/Cas9 screen, we identified IL20RA, which decreased dramatically in OC patients during peritoneal metastasis, as a key factor preventing the transcoelomic metastasis of OC. Reconstitution of IL20RA in highly metastatic OC cells greatly suppresses the transcoelomic metastasis. OC cells, when disseminate into the peritoneal cavity, greatly induce peritoneum mesothelial cells to express IL-20 and IL-24, which in turn activate the IL20RA downstream signaling in OC cells to produce mature IL-18, eventually resulting in the polarization of macrophages into the M1-like subtype to clear the cancer cells. Thus, we show an IL-20/IL20RA-mediated crosstalk between OC and mesothelial cells that supports a metastasis-repressing immune microenvironment.


Subject(s)
CRISPR-Cas Systems , Interleukins/genetics , Neoplasm Metastasis/genetics , Ovarian Neoplasms/genetics , Receptors, Interleukin/genetics , Animals , Cell Line, Tumor , Epithelium/immunology , Female , Gene Knockdown Techniques , Humans , Interleukins/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Peritoneal Cavity/pathology , Receptors, Interleukin/metabolism , Signal Transduction , Tumor Microenvironment
17.
Cancers (Basel) ; 13(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808696

ABSTRACT

Growing evidence suggests that cisplatin and other chemotherapeutic agents promote tumor metastasis while inhibiting tumor growth, which is a critical issue for certain patients in clinical practices. However, the role of chemotherapeutics in promoting tumor metastasis and the molecular mechanism involved are unclear. Here, we investigated the roles of cisplatin in promoting tumor metastasis in lung adenocarcinoma (LUAD). We demonstrated that cisplatin promoted epithelial-mesenchymal transition (EMT), cell motility, and metastasis in vitro and in vivo. The bioinformatic analysis and molecular biology approaches also indicated that DCBLD2 (Discoidin, CUB and LCCL domain containing 2) is a key gene that mediates cisplatin-induced metastasis. DCBLD2 stabilizes ß-catenin by phosphorylating GSK3ß and transporting accumulated ß-catenin to the nucleus to promote the expression of EMT-related transcriptional factors (TFs), ultimately resulting in tumor metastasis. We also identified that cisplatin enhanced DCBLD2 expression by phosphorylating ERK and hence the AP-1-driven transcription of DCBLD2. Furthermore, DCBLD2-specific siRNAs encapsulated by nanocarriers prominently inhibit cisplatin-induced metastasis in vivo. Therefore, DCBLD2 plays a key role in cisplatin-induced metastasis in LUAD and is a potential target for preventing chemotherapy-induced metastasis in vivo.

18.
J Exp Clin Cancer Res ; 39(1): 278, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33298132

ABSTRACT

BACKGROUND: Induction therapy for acute myeloid leukemia (AML) is an anthracycline-based chemotherapy regimen. However, many patients experience a relapse or exhibit refractory disease (R/R). There is an urgent need for more effective regimens to reverse anthracycline resistance in these patients. METHODS: In this paper, Twenty-seven R/R AML patients with anthracycline resistance consecutively received chidamide in combination with anthracycline-based regimen as salvage therapy at the Chinese PLA General Hospital. RESULTS: Of the 27 patients who had received one course of salvage therapy, 13 achieved a complete response and 1 achieved a partial response. We found that the HDAC3-AKT-P21-CDK2 signaling pathway was significantly upregulated in anthracycline-resistant AML cells compared to non-resistant cells. AML patients with higher levels of HDAC3 had lower event-free survival (EFS) and overall survival (OS) rates. Moreover, anthracycline-resistant AML cells are susceptible to chidamide, a histone deacetylase inhibitor which can inhibit cell proliferation, increase cell apoptosis and induce cell-cycle arrest in a time- and dose-dependent manner. Chidamide increases the sensitivity of anthracycline-resistant cells to anthracycline drugs, and these effects are associated with the inhibition of the HDAC3-AKT-P21-CDK2 signaling pathway. CONCLUSION: Chidamide can increase anthracycline drug sensitivity by inhibiting HDAC3-AKT-P21-CDK2 signaling pathway, thus demonstrating the potential for application.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Neoplasm Recurrence, Local/drug therapy , Salvage Therapy , Adolescent , Adult , Aged , Aminopyridines/administration & dosage , Animals , Anthracyclines/administration & dosage , Apoptosis , Benzamides/administration & dosage , Biomarkers, Tumor/genetics , Cell Cycle , Cell Proliferation , Child , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Prognosis , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Young Adult
19.
J Cell Mol Med ; 24(15): 8603-8613, 2020 08.
Article in English | MEDLINE | ID: mdl-32633894

ABSTRACT

Recent research suggested that taking a high-fat diet (HFD) may lead to a gut microbiota imbalance and colon tissue damage. This would lead to increased intestinal permeability and consequent constant circulation of low-grade inflammatory cytokines. Spirulina platensis can protect against HFD-induced metabolic inflammation and can stimulate the growth of beneficial bacteria in in vitro stool cultures. However, it is unknown whether this beneficial effect acts on intestinal tissues. In this study, rats were fed a high-fat diet fed with 3% S platensis for 14 weeks. We analysed endotoxin, the composition of the microbiota, inflammation and gut permeability. We found that S platensis decreased the bodyweight and visceral fat pads weight of the HFD-fed rats. In addition, it lowered the levels of lipopolysaccharide and pro-inflammatory cytokines in serum. Our results showed that S platensis could largely reduce the relative amount of Proteobacteria and the Firmicutes/Bacteroidetes ratio in faecal samples from HFD-fed rats. S platensis significantly reduced intestinal inflammation, as shown by decreased expression of myeloid differentiation factor 88 (MyD88), toll-like receptor 4 (TLR4), NF-κB (p65) and inflammatory cytokines. S platensis also ameliorated the increased permeability and decreased expression of tight junction proteins in the intestinal mucosa, such as ZO-1, Occludin and Claudin-1. Therefore, in HFD-induced gut dysbiosis rats, S platensis benefits health by inhibiting chronic inflammation and gut dysbiosis, and modulating gut permeability.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Spirulina/physiology , Animals , Biomarkers , Body Weight , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Insulin Resistance , Lipids/blood , Male , Models, Biological , Myeloid Differentiation Factor 88/metabolism , Oxidative Stress , Permeability , Rats , Tight Junction Proteins/metabolism , Toll-Like Receptor 4/metabolism
20.
Exp Mol Med ; 50(4): 1-8, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29674693

ABSTRACT

The AML1-ETO fusion protein (A/E), which results from the t(8;21) translocation, is considered to be a leukemia-initiating event. Identifying the mechanisms underlying the oncogenic activity of A/E remains a major challenge. In this study, we identified a specific down-regulation of brain acid-soluble protein 1 (BASP1) in t(8;21) acute myeloid leukemia (AML). A/E recognized AML1-binding sites and recruited DNA methyltransferase 3a (DNMT3a) to the BASP1 promoter sequence, which triggered DNA methylation-mediated silencing of BASP1. Ectopic expression of BASP1 inhibited proliferation and the colony-forming ability of A/E-positive AML cell lines and led to apoptosis and cell cycle arrest. The DNMT inhibitor decitabine up-regulated the expression of BASP1 in A/E-positive AML cell lines. In conclusion, our data suggest that BASP1 silencing via promoter methylation may be involved in A/E-mediated leukemogenesis and that BASP1 targeting may be an actionable therapeutic strategy in t(8;21) AML.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Chromosomes, Human, Pair 21/metabolism , Chromosomes, Human, Pair 8/metabolism , DNA Methylation , Leukemia, Myeloid, Acute/metabolism , Membrane Proteins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Repressor Proteins/biosynthesis , Translocation, Genetic , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , DNA Methyltransferase 3A , Gene Silencing , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , RUNX1 Translocation Partner 1 Protein/genetics , RUNX1 Translocation Partner 1 Protein/metabolism , Repressor Proteins/genetics , THP-1 Cells , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...