Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.232
Filter
1.
Adv Mater ; : e2407235, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264011

ABSTRACT

Improving clinical immunotherapy for glioblastoma (GBM) relies on addressing the immunosuppressive tumor microenvironment (TME). Enhancing CD8+ T cell infiltration and preventing its exhaustion holds promise for effective GBM immunotherapy. Here, a low-intensity focused ultrasound (LIFU)-guided sequential delivery strategy is developed to enhance CD8+ T cells infiltration and activity in the GBM region. The sequential delivery of CXC chemokine ligand 10 (CXCL10) to recruit CD8+ T cells and interleukin-2 (IL-2) to reduce their exhaustion is termed an "open-source throttling" strategy. Consequently, up to 3.39-fold of CD8+ T cells are observed with LIFU-guided sequential delivery of CXCL10, IL-2, and anti-programmed cell death 1 ligand 1 (aPD-L1), compared to the free aPD-L1 group. The immune checkpoint inhibitors (ICIs) therapeutic efficacy is substantially enhanced by the reversed immunosuppressive TME due to the expansion of CD8+ T cells, resulting in the elimination of tumor, prolonged survival time, and long-term immune memory establishment in orthotopic GBM mice. Overall, LIFU-guided sequential cytokine and ICIs delivery offers an "open-source throttling" strategy of CD8+ T cells, which may present a promising strategy for brain-tumor immunotherapy.

2.
J Nanobiotechnology ; 22(1): 561, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39272205

ABSTRACT

BACKGROUND: T cell-based immunotherapies are facing great challenges in the recruitment and activation of tumor-specific T cells against solid tumors. Among which, utilizing nanobody (Nb) or nanobodies (Nbs) to construct T cell engager has emerged as a more practical potential for enhancing the anti-tumor effectiveness of T cells. Here, we designed a new Nb-guided multifunctional T cell engager (Nb-MuTE) that not only recruited effector T cells into the tumor tissues, but also efficiently activated T cells anti-tumor immunity when synergies with photothermal effect. RESULTS: The Nb-MuTE, which was constructed based on an indocyanine green (ICG)-containing liposome with surface conjugation of CD105 and CD3 Nbs, and showed excellent targetability to both tumor and T cells, following enhancement of activation, proliferation and cytokine secretion of tumor-specific T cells. Notably, the immunological anti-tumor functions of Nb-MuTE-mediated T cells were further enhanced by the ICG-induced photothermal effect in vitro and in vivo. CONCLUSIONS: Such a new platform Nb-MuTE provides a practical and "all-in-one" strategy to potentiate T cell responses for the treatment of solid tumor in clinic.


Subject(s)
Immunotherapy , Indocyanine Green , Single-Domain Antibodies , T-Lymphocytes , Animals , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Mice , T-Lymphocytes/immunology , Indocyanine Green/chemistry , Immunotherapy/methods , Cell Line, Tumor , Humans , Neoplasms/therapy , Neoplasms/immunology , Female , Mice, Inbred BALB C , Photothermal Therapy/methods , Liposomes/chemistry , Lymphocyte Activation , Mice, Inbred C57BL , CD3 Complex/immunology
3.
Adv Sci (Weinh) ; : e2401310, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166484

ABSTRACT

Hydrogen (H2) therapy is an emerging, novel, and safe therapeutic modality that uses molecular hydrogen for effective treatment. However, the impact of H2 therapy is limited because hydrogen molecules predominantly depend on the systemic administration of H2 gas, which cannot accumulate at the lesion site with high concentration, thus leading to limited targeting and utilization. Biomaterials are developed to specifically deliver H2 and control its release. In this review, the development process, stimuli-responsive release strategies, and potential therapeutic mechanisms of biomaterial-based H2 therapy are summarized. H2 therapy. Specifically, the produced H2 from biomaterials not only can scavenge free radicals, such as reactive oxygen species (ROS) and lipid peroxidation (LPO), but also can inhibit the danger factors of initiating diseases, including pro-inflammatory cytokines, adenosine triphosphate (ATP), and heat shock protein (HSP). In addition, the released H2 can further act as signal molecules to regulate key pathways for disease treatment. The current opportunities and challenges of H2-based therapy are discussed, and the future research directions of biomaterial-based H2 therapy for clinical applications are emphasized.

4.
Article in English | MEDLINE | ID: mdl-39145784

ABSTRACT

PURPOSE: Somatostatin Receptor 2 (SSTR2)-targeted radiopharmaceutical [68Ga]Ga-DOTATATE has potential advantages in the diagnosis of nasopharyngeal carcinoma (NPC). This study introduces a novel long-lasting SSTR2 analogue, LNC1010, based on DOTATATE, a truncated Evans blue-binding moiety, and a polyethylene-glycol linker. We hypothesised that peptide receptor radionuclide therapy (PRRT) is more effective with [177Lu]Lu-LNC1010 than with [177Lu]Lu-DOTATATE in treating metastatic NPC. METHODS: We assessed binding characteristics of LNC1010 in vitro using C666-1 NPC cells and in-vivo pharmacokinetics of [68Ga]Ga/[177Lu]Lu-LNC1010 in C666-1 NPC xenografts via PET and SPECT imaging, biodistribution studies, and PRRT, and compared them with [68Ga]Ga/[177Lu] Lu-labelled DOTATATE. Furthermore, a proof-of-concept approach for imaging and therapy was conducted in a patient with metastatic NPC. RESULTS: LNC1010 exhibited strong uptake and specific affinity for SSTR2 in C666-1 NPC cells. PET and SPECT imaging demonstrated higher uptake and longer tumour retention of [68Ga]Ga/[177Lu]Lu-LNC1010 than [68Ga]Ga/[177Lu]Lu-DOTATATE in C666-1 NPC xenografts, indicating its suitability for PRRT applications in NPCs. Biodistribution studies confirmed the higher uptake and prolonged retention of [177Lu]Lu-LNC1010 than [177Lu]Lu-DOTATATE. In preclinical PRRT studies, [177Lu]Lu-LNC1010 showed greater inhibition of tumour growth in C666-1 NPC xenografts than [177Lu]Lu-DOTATATE. In a subsequent pilot clinical study, PRRT with [177Lu]Lu-LNC1010 achieved favourable therapeutic and negligible side effects in a patient with metastatic NPC. CONCLUSION: [177Lu]Lu-LNC1010 demonstrated increased tumour uptake and prolonged retention in SSTR2-positive NPCs, with superior anti-tumour efficacy to that of [177Lu]Lu-DOTATATE in preclinical studies. These findings suggest that PRRT with [177Lu]Lu-LNC1010 is a promising treatment for advanced NPC, extending the clinical scope of PRRT beyond neuroendocrine tumours.

5.
Heliyon ; 10(15): e35454, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170111

ABSTRACT

Background: Conditional approvals, also known as accelerated approvals, have been introduced by many pharmaceutical regulators around the world, allowing innovative drugs to enter the market earlier on the basis of limited evidence. This research aims to systematically analyze and compare the post-marketing requirements for conditional approvals of oncology drugs in China and the United States. By collecting and categorizing different types of post-marketing requirements, this study seeks to elucidate how these requirements are proposed and discern the underlying logic and patterns. Methods: This study delved into oncology drug approvals, encompassing FDA accelerated approvals (up to December 31, 2022) and NMPA conditional approvals (from 2017 to December 31, 2022). Leveraging review documents from FDA and NMPA, comprehensive data on product characteristics, all post-marketing commitments and requirements, and especially those related to confirmatory requirements were extracted. The analysis incorporated descriptive statistics, visualizations such as Upset plots, and thorough examination of confirmatory requirement timeframes. Findings: This study examined 168 FDA accelerated approvals and 41 NMPA conditional approvals for oncology indications. Post-marketing requirements displayed diversity: FDA emphasized confirmatory studies, clinical pharmacology studies, and more, while NMPA predominantly focused on confirmatory studies. Confirmatory requirement timeframes indicated higher FDA-required completion times for new confirmatory trials compared to continued completion of original pivotal trials. In contrast, NMPA's requirement patterns were comparatively singular, with relatively fixed timeframes. FDA's evolving trend showed decreasing timeframes over time, suggesting an increasing demand for timely confirmatory data. Interpretation: Conditional approvals offer a unique approach to bring potentially life-saving drugs to the market faster, despite limited supporting evidence. Our analysis of oncology drug conditional approvals in the U.S. and China reveals diverse post-marketing requirement patterns. This study provides valuable insights for regulatory decision-making in a dynamic pharmaceutical landscape. Balancing the risks and rewards of conditional approvals is crucial in ensuring both patient safety and timely access to innovative treatments.

6.
ACS Nano ; 18(35): 23827-23841, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39163559

ABSTRACT

Carrier-free nanodrugs with extraordinary active pharmaceutical ingredient (API) loading (even 100%), avoidable carrier-induced toxicity, and simple synthetic procedures are considered as one of the most promising candidates for disease theranostics. Substantial studies and the commercial success of "carrier-free" nanocrystals have demonstrated their strong clinical potential. However, their practical translations remain challenging and are impeded by unpredictable assembly processes, insufficient delivery efficiency, and an unclear in vivo fate. In this Perspective, we systematically outline the contemporary and emerging carrier-free nanodrugs based on diverse APIs, as well as highlight their opportunities and challenges in clinical translation. Looking ahead, further improvements in design and preparation, drug delivery, in vivo efficacy, and safety of carrier-free nanomedicines are essential to facilitate their translation from the bench to bedside.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Nanomedicine/methods , Drug Delivery Systems , Animals , Drug Carriers/chemistry
7.
World Neurosurg ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159675

ABSTRACT

BACKGROUND: Sporadic Creutzfeldt-Jakob Disease (SCJD) is a severe neurodegenerative disorder characterized by rapid progression and extensive neuronal loss. Disulfidptosis is an innovative type of programmed cell demise characterized by an accumulation of disulfide bonds within the cellular cytoplasm, subsequently triggering functional disruption and cell demise. METHODS: Through literature review and analysis, we identified 18 candidate disulfidptosis-related genes (DRGs) involved in cellular processes. The dataset used for analysis, GSE124571, was obtained from the Gene Expression Omnibus database. Gene-gene and protein-protein interactions were analyzed using the GeneMANIA and STRING databases, respectively. We also performed enrichment analysis, differential expressed genes analysis, weighted gene correlation network analysis analysis, immune infiltration, consensus clustering, and matrix correlation. RESULTS: The analysis showed that 12 out of 18 DRGs were significantly changed between SCJD and control groups. The DRGs had strong interactions such as physical interactions, co-expression and genetic interactions, and were enriched in biological processes and pathways related to actin cytoskeletal regulation. The study most notably identified 3 hub genes (WASF2, TLN1 and G6PD) important for SCJD and emphasized the functional significance of the identified hub genes. The role of the immune system in the pathogenesis of SCJD. The study found that the composition of immune cells in SCJD brain tissue is altered. Consensus clustering provided insights into immune infiltration and hub gene expression in SCJD subgroup. CONCLUSIONS: Our study reveals the possible involvement of disulfidptosis in SCJD and highlights the significance of identified hub genes as potential biomarkers and therapeutic targets for SCJD.

8.
ACS Appl Mater Interfaces ; 16(31): 40391-40410, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39042829

ABSTRACT

Despite the development of various novel therapies, glioblastoma (GBM) remains a devastating disease, with a median survival of less than 15 months. Recently, targeted radionuclide therapy has shown significant progress in treating solid tumors, with the approval of Lutathera for neuroendocrine tumors and Pluvicto for prostate cancer by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This achievement has shed light on the potential of targeted radionuclide therapy for other solid tumors, including GBM. This review presents the current status of targeted radionuclide therapy in GBM, highlighting the commonly used therapeutic radionuclides emitting alpha, beta particles, and Auger electrons that could induce potent molecular and cellular damage to treat GBM. We then explore a range of targeting vectors, including small molecules, peptides, and antibodies, which selectively target antigen-expressing tumor cells with minimal or no binding to healthy tissues. Considering that radiopharmaceuticals for GBM are often administered locoregionally to bypass the blood-brain barrier (BBB), we review prominent delivery methods such as convection-enhanced delivery, local implantation, and stereotactic injections. Finally, we address the challenges of this therapeutic approach for GBM and propose potential solutions.


Subject(s)
Glioblastoma , Radioisotopes , Radiopharmaceuticals , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/chemistry , Radioisotopes/therapeutic use , Radioisotopes/chemistry , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects
9.
Acta Biomater ; 185: 361-370, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39025392

ABSTRACT

The effectiveness of tumor treatment using reactive oxygen species as the primary therapeutic medium is hindered by limitations of tumor microenvironment (TME), such as intrinsic hypoxia in photodynamic therapy (PDT) and overproduction of reducing glutathione (GSH) in chemodynamic therapy (CDT). Herein, we fabricate metal-polyphenol self-assembled nanodots (Fe@BDP NDs) guided by second near-infrared (NIR-II) fluorescence imaging. The Fe@BDP NDs are designed for synergistic combination of type-I PDT and CDT-amplified ferroptosis. In a mildly acidic TME, Fe@BDP NDs demonstrate great Fenton activity, leading to the generation of highly toxic hydroxyl radicals from overproduced hydrogen peroxide in tumor cells. Furthermore, Fe@BDP NDs show favorable efficacy in type-I PDT, even in tolerating tumor hypoxia, generating active superoxide anion upon exposure to 808 nm laser irradiation. The significant efficiency in reactive oxygen species (ROS) products results in the oxidation of sensitive polyunsaturated fatty acids, accelerating lethal lipid peroxidation (LPO) bioprocess. Additionally, Fe@BDP NDs illustrate an outstanding capability for GSH depletion, causing the inactivation of glutathione peroxidase 4 and further promoting lethal LPO. The synergistic type-I photodynamic and chemodynamic cytotoxicity effectively trigger irreversible ferroptosis by disrupting the intracellular redox homeostasis. Moreover, Fe@BDP NDs demonstrate charming NIR-II fluorescence imaging capability and effectively accumulated at the tumor site, visualizing the distribution of Fe@BDP NDs and the treatment process. The chemo/photo-dynamic-amplified ferroptotic efficacy of Fe@BDP NDs was evidenced both in vitro and in vivo. This study presents a compelling approach to intensify ferroptosis via visualized CDT and PDT. STATEMENT OF SIGNIFICANCE: In this study, we detailed the fabrication of metal-polyphenol self-assembled nanodots (Fe@BDP NDs) guided by second near-infrared (NIR-II) fluorescence imaging, aiming to intensify ferroptosis via the synergistic combination of type-I PDT and CDT. In a mildly acidic TME, Fe@BDP NDs exhibited significant Fenton activity, resulting in the generation of highly toxic •OH from overproduced H2O2 in tumor cells. Fe@BDP NDs possessed a remarkable capability for GSH depletion, resulting in the inactivation of glutathione peroxidase 4 (GPX4) and further accelerating lethal LPO. This study presented a compelling approach to intensify ferroptosis via visualized CDT and PDT.


Subject(s)
Ferroptosis , Photochemotherapy , Polyphenols , Ferroptosis/drug effects , Photochemotherapy/methods , Humans , Animals , Polyphenols/chemistry , Polyphenols/pharmacology , Optical Imaging , Mice , Cell Line, Tumor , Infrared Rays , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Mice, Inbred BALB C
10.
World J Gastrointest Surg ; 16(6): 1717-1725, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983317

ABSTRACT

BACKGROUND: Laparoscopic-assisted radical gastrectomy (LARG) is the standard treatment for early-stage gastric carcinoma (GC). However, the negative impact of this procedure on respiratory function requires the optimized intraoperative management of patients in terms of ventilation. AIM: To investigate the influence of pressure-controlled ventilation volume-guaranteed (PCV-VG) and volume-controlled ventilation (VCV) on blood gas analysis and pulmonary ventilation in patients undergoing LARG for GC based on the lung ultrasound score (LUS). METHODS: The study included 103 patients with GC undergoing LARG from May 2020 to May 2023, with 52 cases undergoing PCV-VG (research group) and 51 cases undergoing VCV (control group). LUS were recorded at the time of entering the operating room (T0), 20 minutes after anesthesia with endotracheal intubation (T1), 30 minutes after artificial pneumoperitoneum (PP) establishment (T2), and 15 minutes after endotracheal tube removal (T5). For blood gas analysis, arterial partial pressure of oxygen (PaO2) and partial pressure of carbon dioxide (PaCO2) were observed. Peak airway pressure (Ppeak), plateau pressure (Pplat), mean airway pressure (Pmean), and dynamic pulmonary compliance (Cdyn) were recorded at T1 and T2, 1 hour after PP establishment (T3), and at the end of the operation (T4). Postoperative pulmonary complications (PPCs) were recorded. Pre- and postoperative serum interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay. RESULTS: Compared with those at T0, the whole, anterior, lateral, posterior, upper, lower, left, and right lung LUS of the research group were significantly reduced at T1, T2, and T5; in the control group, the LUS of the whole and partial lung regions (posterior, lower, and right lung) decreased significantly at T2, while at T5, the LUS of the whole and some regions (lateral, lower, and left lung) increased significantly. In comparison with the control group, the whole and regional LUS of the research group were reduced at T1, T2, and T5, with an increase in PaO2, decrease in PaCO2, reduction in Ppeak at T1 to T4, increase in Pmean and Cdyn, and decrease in Pplat at T4, all significant. The research group showed a significantly lower incidence of PPCs than the control group within 3 days postoperatively. Postoperative IL-1ß, IL-6, and TNF-α significantly increased in both groups, with even higher levels in the control group. CONCLUSION: LUS can indicate intraoperative non-uniformity and postural changes in pulmonary ventilation under PCV-VG and VCV. Under the lung protective ventilation strategy, the PCV-VG mode more significantly improved intraoperative lung ventilation in patients undergoing LARG for GC and reduced lung injury-related cytokine production, thereby alleviating lung injury.

11.
Adv Sci (Weinh) ; : e2401014, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083299

ABSTRACT

Precise identification of glioblastoma (GBM) microinfiltration, which is essential for achieving complete resection, remains an enormous challenge in clinical practice. Here, the study demonstrates that Raman spectroscopy effectively identifies GBM microinfiltration with cellular resolution in clinical specimens. The spectral differences between infiltrative lesions and normal brain tissues are attributed to phospholipids, nucleic acids, amino acids, and unsaturated fatty acids. These biochemical metabolites identified by Raman spectroscopy are further confirmed by spatial metabolomics. Based on differential spectra, Raman imaging resolves important morphological information relevant to GBM lesions in a label-free manner. The area under the receiver operating characteristic curve (AUC) for Raman spectroscopy combined with machine learning in detecting infiltrative lesions exceeds 95%. Most importantly, the cancer cell threshold identified by Raman spectroscopy is as low as 3 human GBM cells per 0.01 mm2. Raman spectroscopy enables the detection of previously undetectable diffusely infiltrative cancer cells, which holds potential value in guiding complete tumor resection in GBM patients.

12.
Adv Sci (Weinh) ; : e2310225, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958527

ABSTRACT

Detection of circulating tumor DNA (ctDNA) mutations, which are molecular biomarkers present in bodily fluids of cancer patients, can be applied for tumor diagnosis and prognosis monitoring. However, current profiling of ctDNA mutations relies primarily on polymerase chain reaction (PCR) and DNA sequencing and these techniques require preanalytical processing of blood samples, which are time-consuming, expensive, and tedious procedures that increase the risk of sample contamination. To overcome these limitations, here the engineering of a DNA/γPNA (gamma peptide nucleic acid) hybrid nanoreporter is disclosed for ctDNA biosensing via in situ profiling and recording of tumor-specific DNA mutations. The low tolerance of γPNA to single mismatch in base pairing with DNA allows highly selective recognition and recording of ctDNA mutations in peripheral blood. Owing to their remarkable biostability, the detached γPNA strands triggered by mutant ctDNA will be enriched in kidneys and cleared into urine for urinalysis. It is demonstrated that the nanoreporter has high specificity for ctDNA mutation in peripheral blood, and urinalysis of cleared γPNA can provide valuable information for tumor progression and prognosis evaluation. This work demonstrates the potential of the nanoreporter for urinary monitoring of tumor and patient prognosis through in situ biosensing of ctDNA mutations.

13.
Adv Sci (Weinh) ; 11(30): e2402361, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874523

ABSTRACT

Radiotheranostics is a rapidly growing approach in personalized medicine, merging diagnostic imaging and targeted radiotherapy to allow for the precise detection and treatment of diseases, notably cancer. Radiolabeled antibodies have become indispensable tools in the field of cancer theranostics due to their high specificity and affinity for cancer-associated antigens, which allows for accurate targeting with minimal impact on surrounding healthy tissues, enhancing therapeutic efficacy while reducing side effects, immune-modulating ability, and versatility and flexibility in engineering and conjugation. However, there are inherent limitations in using antibodies as a platform for radiopharmaceuticals due to their natural activities within the immune system, large size preventing effective tumor penetration, and relatively long half-life with concerns for prolonged radioactivity exposure. Antibody engineering can solve these challenges while preserving the many advantages of the immunoglobulin framework. In this review, the goal is to give a general overview of antibody engineering and design for tumor radiotheranostics. Particularly, the four ways that antibody engineering is applied to enhance radioimmunoconjugates: pharmacokinetics optimization, site-specific bioconjugation, modulation of Fc interactions, and bispecific construct creation are discussed. The radionuclide choices for designed antibody radionuclide conjugates and conjugation techniques and future directions for antibody radionuclide conjugate innovation and advancement are also discussed.


Subject(s)
Neoplasms , Radioimmunotherapy , Humans , Neoplasms/immunology , Neoplasms/radiotherapy , Neoplasms/therapy , Radioimmunotherapy/methods , Radiopharmaceuticals/therapeutic use , Animals , Immunoconjugates/chemistry , Protein Engineering/methods
14.
Adv Mater ; 36(33): e2405761, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923441

ABSTRACT

Abdominal aortic aneurysm (AAA) is a highly lethal cardiovascular disease that currently lacks effective pharmacological treatment given the complex pathophysiology of the disease. Here, single-cell RNA-sequencing data from patients with AAA and a mouse model are analyzed, which reveals pivotal pathological changes, including the M1-like polarization of macrophages and the loss of contractile function in smooth muscle cells (SMCs). Both cell types express the integrin αvß3, allowing for their dual targeting with a single rationally designed molecule. To this end, a biocompatible nanodrug, which is termed EVMS@R-HNC, that consists of the multifunctional drug everolimus (EVMS) encapsulated by the hepatitis B virus core protein modifies to contain the RGD sequence to specifically bind to integrin αvß3 is designed. Both in vitro and in vivo results show that EVMS@R-HNC can target macrophages as well as SMCs. Upon binding of the nanodrug, the EVMS is released intracellularly where it exhibits multiple functions, including inhibiting M1 macrophage polarization, thereby suppressing the self-propagating inflammatory cascade and immune microenvironment imbalance, while preserving the normal contractile function of SMCs. Collectively, these results suggest that EVMS@R-HNC presents a highly promising therapeutic approach for the management of AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Biocompatible Materials , Macrophages , Myocytes, Smooth Muscle , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Animals , Humans , Mice , Macrophages/drug effects , Macrophages/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Everolimus/pharmacology , Everolimus/chemistry , Integrin alphaVbeta3/metabolism , Nanoparticles/chemistry , Disease Models, Animal , Oligopeptides/chemistry , Oligopeptides/pharmacology
15.
ACS Nano ; 18(27): 17852-17868, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38939981

ABSTRACT

The discovery of cuproptosis, a copper-dependent mechanism of programmed cell death, has provided a way for cancer treatment. However, cuproptosis has inherent limitations, including potential cellular harm, the lack of targeting, and insufficient efficacy as a standalone treatment. Therefore, exogenously controlled combination treatments have emerged as key strategies for cuproptosis-based oncotherapy. In this study, a Cu2-xSe@cMOF nanoplatform was constructed for combined sonodynamic/cuproptosis/gas therapy. This platform enabled precise cancer cotreatment, with external control allowing the selective induction of cuproptosis in cancer cells. This approach effectively prevented cancer metastasis and recurrence. Furthermore, Cu2-xSe@cMOF was combined with the antiprogrammed cell death protein ligand-1 antibody (aPD-L1), and this combination maximized the advantages of cuproptosis and immune checkpoint therapy. Additionally, under ultrasound irradiation, the H2Se gas generated from Cu2-xSe@cMOF induced cytotoxicity in cancer cells. Further, it generated reactive oxygen species, which hindered cell survival and proliferation. This study reports an externally controlled system for cuproptosis induction that combines a carbonized metal-organic framework with aPD-L1 to enhance cancer treatment. This precision and reinforced cuproptosis cancer therapy platform could be valuable as an effective therapeutic agent to reduce cancer mortality and morbidity in the future.


Subject(s)
Copper , Immune Checkpoint Inhibitors , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Mice , Animals , Copper/chemistry , Copper/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/therapy , Female , Carbon/chemistry , Carbon/pharmacology , Mice, Inbred BALB C
16.
Signal Transduct Target Ther ; 9(1): 142, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825657

ABSTRACT

Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.


Subject(s)
Immune Checkpoint Inhibitors , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Endopeptidases/genetics , NIH 3T3 Cells , Radiopharmaceuticals/therapeutic use , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Xenograft Model Antitumor Assays , Immunotherapy , Gelatinases/genetics , Gelatinases/immunology , Lutetium/pharmacology , Cell Line, Tumor
17.
Int J Nanomedicine ; 19: 5793-5812, 2024.
Article in English | MEDLINE | ID: mdl-38882535

ABSTRACT

This review article discusses the potential of nanomaterials in targeted therapy and immunomodulation for stroke-induced immunosuppression. Although nanomaterials have been extensively studied in various biomedical applications, their specific use in studying and addressing immunosuppression after stroke remains limited. Stroke-induced neuroinflammation is characterized by T-cell-mediated immunodepression, which leads to increased morbidity and mortality. Key observations related to immunodepression after stroke, including lymphopenia, T-cell dysfunction, regulatory T-cell imbalance, and cytokine dysregulation, are discussed. Nanomaterials, such as liposomes, micelles, polymeric nanoparticles, and dendrimers, offer advantages in the precise delivery of drugs to T cells, enabling enhanced targeting and controlled release of immunomodulatory agents. These nanomaterials have the potential to modulate T-cell function, promote neuroregeneration, and restore immune responses, providing new avenues for stroke treatment. However, challenges related to biocompatibility, stability, scalability, and clinical translation need to be addressed. Future research efforts should focus on comprehensive studies to validate the efficacy and safety of nanomaterial-based interventions targeting T cells in stroke-induced immunosuppression. Collaborative interdisciplinary approaches are necessary to advance the field and translate these innovative strategies into clinical practice, ultimately improving stroke outcomes and patient care.


Subject(s)
Nanostructures , Stroke , T-Lymphocytes , Animals , Humans , Cytokines/metabolism , Cytokines/immunology , Nanomedicine , Nanoparticles/chemistry , Nanostructures/chemistry , Stroke/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
18.
J Am Chem Soc ; 146(25): 17517-17529, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869959

ABSTRACT

Despite the widespread use of hydrophilic building blocks to incorporate 18F and improve tracer pharmacokinetics, achieving effective leaving group-mediated nucleophilic 18F-fluorination in water (excluding 18F/19F-exchange) remains a formidable challenge. Here, we present a water-compatible SN2 leaving group-mediated 18F-fluorination method employing preconjugated "AquaF" (phosphonamidic fluorides) building blocks. Among 19 compact tetracoordinated pentavalent P(V)-F candidates, the "AquaF" building blocks exhibit superior water solubility, sufficient capacity for 18F-fluorination in water, and excellent in vivo metabolic properties. Two nitropyridinol leaving groups, identified from a pool of leaving group candidates that further enhance the precursor water solubility, enable 18F-fluorination in water with a 10-2 M-1 s-1 level reaction rate constant (surpassing the 18F/19F-exchange) at room temperature. With the exergonic concerted SN2 18F-fluorination mechanism confirmed, this 18F-fluorination method achieves ∼90% radiochemical conversions and reaches a molar activity of 175 ± 40 GBq/µmol (using 12.2 GBq initial activity) in saline for 12 "AquaF"-modified proof-of-concept functional substrates and small-molecule 18F-tracers. [18F]AquaF-Flurpiridaz demonstrates significantly improved radiochemical yield and molar activity compared to 18F-Flurpiridaz, alongside enhanced cardiac uptake and heart/liver ratio in targeted myocardial perfusion imaging, providing a comprehensive illustration of "AquaF" building blocks-assisted water-compatible SN2 18F-fluorination of small-molecule radiotracers.


Subject(s)
Fluorine Radioisotopes , Halogenation , Water , Fluorine Radioisotopes/chemistry , Water/chemistry , Animals , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Mice , Positron-Emission Tomography , Solubility , Molecular Structure , Radioactive Tracers
19.
Int J Nanomedicine ; 19: 5781-5792, 2024.
Article in English | MEDLINE | ID: mdl-38882546

ABSTRACT

Background: While nanoplatform-based cancer theranostics have been researched and investigated for many years, enhancing antitumor efficacy and reducing toxic side effects is still an essential problem. Methods: We exploited nanoparticle coordination between ferric (Fe2+) ions and telomerase-targeting hairpin DNA structures to encapsulate doxorubicin (DOX) and fabricated Fe2+-DNA@DOX nanoparticles (BDDF NPs). This work studied the NIR fluorescence imaging and pharmacokinetic studies targeting the ability and biodistribution of BDDF NPs. In vitro and vivo studies investigated the nano formula's toxicity, imaging, and synergistic therapeutic effects. Results: The enhanced permeability and retention (EPR) effect and tumor targeting resulted in prolonged blood circulation times and high tumor accumulation. Significantly, BDDF NPs could reduce DOX-mediated cardiac toxicity by improving the antioxidation ability of cardiomyocytes based on the different telomerase activities and iron dependency in normal and tumor cells. The synergistic treatment efficacy is enhanced through Fe2+-mediated ferroptosis and the ß-catenin/p53 pathway and improved the tumor inhibition rate. Conclusion: Harpin DNA-based nanoplatforms demonstrated prolonged blood circulation, tumor drug accumulation via telomerase-targeting, and synergistic therapy to improve antitumor drug efficacy. Our work sheds new light on nanomaterials for future synergistic chemotherapy.


Subject(s)
Doxorubicin , Telomerase , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Telomerase/metabolism , Cell Line, Tumor , Mice , DNA/chemistry , DNA/pharmacokinetics , DNA/administration & dosage , Tissue Distribution , Nanoparticles/chemistry , Neoplasms/drug therapy , Ferroptosis/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Mice, Inbred BALB C , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
20.
Exploration (Beijing) ; 4(1): 20230019, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38854493

ABSTRACT

Calcium ions (Ca2+) are indispensable and versatile metal ions that play a pivotal role in regulating cell metabolism, encompassing cell survival, proliferation, migration, and gene expression. Aberrant Ca2+ levels are frequently linked to cell dysfunction and a variety of pathological conditions. Therefore, it is essential to maintain Ca2+ homeostasis to coordinate body function. Disrupting the balance of Ca2+ levels has emerged as a potential therapeutic strategy for various diseases, and there has been extensive research on integrating this approach into nanoplatforms. In this review, the current nanoplatforms that regulate Ca2+ homeostasis for cancer therapy are first discussed, including both direct and indirect approaches to manage Ca2+ overload or inhibit Ca2+ signalling. Then, the applications of these nanoplatforms in targeting different cells to regulate their Ca2+ homeostasis for achieving therapeutic effects in cancer treatment are systematically introduced, including tumour cells and immune cells. Finally, perspectives on the further development of nanoplatforms for regulating Ca2+ homeostasis, identifying scientific limitations and future directions for exploitation are offered.

SELECTION OF CITATIONS
SEARCH DETAIL