Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Chem Biol Drug Des ; 103(1): e14440, 2024 01.
Article in English | MEDLINE | ID: mdl-38230784

ABSTRACT

Naoxintong capsule (NXT) is a clinical drug for the treatment of cardiovascular diseases, but its pharmacological mechanism against hypertension remains unclear. Data concerning the compounds and targets of NXT were obtained from the TCMSP and DrugBank, whereas data concerning hypertension-related genes were obtained from DisGeNET. The network was analyzed and established by STRING and Cytoscape, and function enrichment was analyzed by GO and KEGG analysis. Molecular docking was performed to analyze the interaction between ingredients and targets, cellular activity was evaluated by MTT assay, and RT-qPCR and western blot were used to evaluate the expressions of related genes. The results showed that 146 active therapeutic components can target hypertension-related genes, and we found that core genes were mainly involved in the metabolism of lipids, lipopolysaccharides, the inflammatory signaling pathway, and the oxidative stress pathway. In addition, there was high affinity between the components of NXT and targets of hypertension, where the former can increase cell viability and reduce the expressions of NOX4, MCP-1, BAX, TNF-α and IL-1ß. Moreover, NXT inhibited the expressions of IL-6 and Fis1, as well as increased the expression of MCL-1. These results revealed the active compounds, hypertension targets, signaling pathways, and molecular mechanisms of NXT for treating hypertension, offering references for the clinical application of NXT and the treatment of hypertension.


Subject(s)
Cardiovascular Diseases , Drugs, Chinese Herbal , Hypertension , Humans , Molecular Docking Simulation , Hypertension/drug therapy , Tumor Necrosis Factor-alpha , Drugs, Chinese Herbal/pharmacology
2.
Dis Markers ; 2023: 2369352, 2023.
Article in English | MEDLINE | ID: mdl-37476628

ABSTRACT

During the last few decades, the morbidity and mortality of heart failure (HF) have remained on an upward trend. Despite the advances in therapeutic and diagnostic measures, there are still many aspects requiring further research. This study is aimed at finding potential long noncoding RNAs (lncRNAs) that could aid with the diagnosis and treatment of HF. We performed RNA sequencing on the peripheral blood of healthy controls as well as HF patients. The expression of lncRNAs was validated by RT-qPCR. Bioinformatic analysis was performed to investigate the possible mechanism of differentially expressed lncRNAs and mRNAs. The diagnostic value of lncRNAs was analysed by ROC analysis. Finally, a total of 207 mRNAs and 422 lncRNAs were identified. GO and KEGG pathway analyses revealed that biological pathways such as immune response, regulation of cell membrane, and transcriptional regulatory process were associated with the pathological progress of HF. The lncRNA-mRNA coexpression network was conducted, and several mRNAs were identified as key potential pathological targets, while lncRNA CHST11, MIR29B2CHG, CR381653.1, and FP236383.2 presented a potential diagnostic value for HF. These findings provide novel insights for the underlying mechanisms and possible therapeutic targets for HF.


Subject(s)
Heart Failure , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , Gene Expression Regulation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Computational Biology , Heart Failure/genetics , Gene Regulatory Networks , Gene Expression Profiling
3.
Front Pharmacol ; 14: 1049742, 2023.
Article in English | MEDLINE | ID: mdl-37234708

ABSTRACT

Cancers, especially malignant tumors, contribute to high global mortality rates, resulting in great economic burden to society. Many factors are associated with cancer pathogenesis, including vascular endothelial growth factor-A (VEGFA) and circular RNAs (circRNA). VEGFA is a pivotal regulator of vascular development such as angiogenesis, which is an important process in cancer development. CircRNAs have covalently closed structures, making them highly stable. CircRNAs are widely distributed and participate in many physiological and pathological processes, including modulating cancer pathogenesis. CircRNAs act as transcriptional regulators of parental genes, microRNA (miRNA)/RNA binding protein (RBP) sponges, protein templates. CircRNAs mainly function via binding to miRNAs. CircRNAs have been shown to influence different diseases such as coronary artery diseases and cancers by regulating VEGFA levels via binding to miRNAs. In this paper, we explored the origin and functional pathways of VEGFA, reviewed the current understanding of circRNA properties and action mechanisms, and summarized the role of circRNAs in regulating VEGFA during cancer pathogenesis.

4.
Front Mol Biosci ; 10: 1107651, 2023.
Article in English | MEDLINE | ID: mdl-36714260

ABSTRACT

Gastric cancer (GC) is a malignant cancer that reduces life expectancy worldwide. Although treatment strategies have improved, patients with GC still have poor prognoses. Hence, it is necessary to understand the molecular mechanisms of GC and to find new therapeutic targets. Mitochondrial dynamics and mitochondrial dysfunction are associated with cancer cell growth and progression. Numerous studies have reported that non-coding RNAs (ncRNAs) can participate in the occurrence and development of GC by regulating mitochondrial dynamics. Elucidating the crosstalk between ncRNAs and mitochondria would be helpful in preventing and treating GC. Herein, we review and summarize the functions of oncogenes and tumor suppressors in suppressing ncRNAs and regulating mitochondrial dynamics in GC tumor growth, proliferation, invasion and metastasis. This review provides new insights into the pathogenesis of and intervention for GC.

5.
J Microbiol Biotechnol ; 32(10): 1226-1233, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36196014

ABSTRACT

Probiotics are live microorganisms that can be consumed by humans in amounts sufficient to offer health-promoting effects. Owing to their various biological functions, probiotics are widely used in biological engineering, industry and agriculture, food safety, and the life and health fields. Lactobacillus acidophilus (L. acidophilus), an important human intestinal probiotic, was originally isolated from the human gastrointestinal tract and its functions have been widely studied ever since it was named in 1900. L. acidophilus has been found to play important roles in many aspects of human health. Due to its good resistance against acid and bile salts, it has broad application prospects in functional, edible probiotic preparations. In this review, we explore the basic characteristics and biological functions of L. acidophilus based on the research progress made thus far worldwide. Various problems to be solved regarding the applications of probiotic products and their future development are also discussed.


Subject(s)
Lactobacillus acidophilus , Probiotics , Humans , Lactobacillus acidophilus/physiology , Intestines , Gastrointestinal Tract , Bile Acids and Salts/pharmacology
6.
J Microbiol Biotechnol ; 32(10): 1-8, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36192851

ABSTRACT

Probiotics are live microorganisms that can be consumed by humans in amounts sufficient to offer health-promoting effects. Owing to their various biological functions, probiotics are widely used in biological engineering, industry and agriculture, food safety, and the life and health fields. Lactobacillus acidophilus (L. acidophilus), an important human intestinal probiotic, was originally isolated from the human gastrointestinal tract and its functions have been widely studied ever since it was named in 1900. L. acidophilus has been found to play important roles in many aspects of human health. Due to its good resistance against acid and bile salts, it has broad application prospects in functional, edible probiotic preparations. In this review, we explore the basic characteristics and biological functions of L. acidophilus based on the research progress made thus far worldwide. Various problems to be solved regarding the applications of probiotic products and their future development are also discussed.

7.
Front Physiol ; 13: 952445, 2022.
Article in English | MEDLINE | ID: mdl-36117707

ABSTRACT

Patients with diabetes have severe vascular complications, such as diabetic nephropathy, diabetic retinopathy, cardiovascular disease, and neuropathy. Devastating vascular complications lead to increased mortality, blindness, kidney failure, and decreased overall quality of life in people with type 2 diabetes (T2D). Glycolipid metabolism disorder plays a vital role in the vascular complications of T2D. However, the specific mechanism of action remains to be elucidated. In T2D patients, vascular damage begins to develop before insulin resistance and clinical diagnosis. Endothelial dysregulation is a significant cause of vascular complications and the early event of vascular injury. Hyperglycemia and hyperlipidemia can trigger inflammation and oxidative stress, which impair endothelial function. Furthermore, during the pathogenesis of T2D, epigenetic modifications are aberrant and activate various biological processes, resulting in endothelial dysregulation. In the present review, we provide an overview and discussion of the roles of hyperglycemia- and hyperlipidemia-induced endothelial dysfunction, inflammatory response, oxidative stress, and epigenetic modification in the pathogenesis of T2D. Understanding the connections of glucotoxicity and lipotoxicity with vascular injury may reveal a novel potential therapeutic target for diabetic vascular complications.

8.
Biomed Res Int ; 2022: 7281120, 2022.
Article in English | MEDLINE | ID: mdl-35924262

ABSTRACT

MRG-binding protein (MRGBP) is a transcription factor widely involved in physiological and pathological processes. Many studies have discussed the relationship between the expression level of MRGBP and the prognosis of various malignant tumours. However, the role and clinicopathological significance of MRGBP in head and neck squamous cell carcinoma (HNSC) are unclear. In this study, the Wilcoxon signed-rank test and logistic regression were used to analyze the relationship between clinical characteristics and MRGBP expression in HNSC. The Kaplan-Meier plotter analysis and Cox regression analysis were established to evaluate the effect of MRGBP on prognosis, and the receiver operating characteristic (ROC) curve and nomogram was constructed. Gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were used to analyze the correlation between MRGBP and immune infiltration. The results showed that the expression of MRGBP in HNSC tissues was significantly higher than that in normal tissues. The KM plotter analysis showed that the OS of HNSC patients was shorter. The multivariate Cox analysis further confirmed that increased expression of MRGBP was an independent risk factor for OS in HNSC patients. In addition, ROC analysis confirmed its diagnostic value and constructed prognostic nomograms, including age, T, M, N classification, pathological stage, and MRGBP. GSEA showed that MRGBP was associated with high expression of GPCR ligand binding, interleukin receptor binding, and neutrophil degranulation, and ssGSEA showed that MRGBP was associated with T cells and mast cells. In conclusion, MRGBP can serve as an independent prognostic biomarker related to immune invasion of head and neck squamous cell carcinoma.


Subject(s)
Carrier Proteins , Head and Neck Neoplasms , Biomarkers, Tumor/genetics , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/genetics , Humans , Ligands , Prognosis , Receptors, G-Protein-Coupled , Squamous Cell Carcinoma of Head and Neck/diagnosis , Squamous Cell Carcinoma of Head and Neck/genetics
9.
Front Physiol ; 13: 725919, 2022.
Article in English | MEDLINE | ID: mdl-35418873

ABSTRACT

Excessive production of free radicals can induce cellular damage, which is associated with many diseases. RNA is more susceptible to oxidative damage than DNA due to its single-stranded structure, and lack of protective proteins. Yet, oxidative damage to RNAs received little attention. Accumulating evidence reveals that oxidized RNAs may be dysfunctional and play fundamental role in the occurrence and development of type 2 diabetes (T2D) and its complications. Oxidized guanine nucleoside, 8-oxo-7, 8-dihydroguanine (8-oxoGuo) is a biomarker of RNA oxidation that could be associated with prognosis in patients with T2D. Nowadays, some clinical trials used antioxidants for the treatment of T2D, though the pharmacological effects remained unclear. In this review, we overview the cellular handling mechanisms and the consequences of the oxidative RNA damage for the better understanding of pathogenesis of T2D and may provide new insights to better therapeutic strategy.

10.
Anticancer Drugs ; 33(1): e491-e499, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34261923

ABSTRACT

The most common pathological subtype of renal carcinoma is RCC, and its development is closely related to immune infiltration. In our study, we investigated the relationship between zinc finger protein 668 and the prognostic risk, clinical characteristics, overall survival and related pathways. We analyzed the association between ZNF668 and immune cell infiltration through the TIMER database. The results showed that the expression of ZNF668 in RCC was higher than that in normal tissues (P < 0.001). The high expression of ZNF668 is clinically relevant, such as tumor stage (P = 0.001) and TNM classification (T: P = 7.37 e-04; N: P = 0.008; M: P < 0.001). Survival analysis showed that patients with high ZNF668 expression had a significantly poor prognosis (P = 0.023). Univariate analysis showed a significant decrease in overall survival in RCC patients with high ZNF668 expression (P = 0.023). Immuno-cell infiltration showed a significant decrease in CD4+ T cell and dendritic cell infiltration in RCC patients with high expression of ZNF668. GO/KEGG analysis showed that multiple pathways were differentially enriched in the high expression pathway of ZNF668, such as complement activation, and estrogen signaling pathway. In conclusion, high ZNF668 expression is a predictor in RCC.


Subject(s)
Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Tumor Suppressor Proteins/genetics , Aged , Biomarkers, Tumor , CD4-Positive T-Lymphocytes/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Complement System Proteins/agonists , Dendritic Cells/metabolism , Estrogens/metabolism , Female , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Neoplasm Staging , Prognosis , ROC Curve , Signal Transduction/physiology , Survival Analysis
11.
Mol Ther Nucleic Acids ; 25: 638-651, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34589283

ABSTRACT

Doxorubicin (DOX)-induced cardiotoxicity has been one of the major limitations for its clinical use. Although extensive studies have been conducted to decipher the molecular mechanisms underlying DOX cardiotoxicity, no effective preventive or therapeutic measures have yet been identified. Microarray analysis showed that multiple long non-coding RNAs (lncRNAs) are differentially expressed between control- and DOX-treated cardiomyocytes. Functional enrichment analysis indicated that the differentially expressed genes are annotated to cardiac hypertrophic pathways. Among differentially expressed lncRNAs, cardiomyocyte mitochondrial dynamic-related lncRNA 1 (CMDL-1) is the most significantly downregulated lncRNA in cardiomyocytes after DOX exposure. The protein-RNA interaction analysis showed that CMDL-1 may target dynamin-related protein 1 (Drp1). Mechanistic analysis shows that lentiviral overexpression of CMDL-1 prevents DOX-induced mitochondrial fission and apoptosis in cardiomyocytes. However, overexpression of CMDL-1 cannot effectively reduce mitochondrial fission when Drp1 is minimally expressed by small interfering RNA Drp1 (siDrp1). Overexpression of CMDL-1 promotes the association between CMDL-1 and Drp1, as well as with phosphorylated (p-)Drp1, as evidenced by RNA immunoprecipitation analysis. These data indicate the role of CMDL-1 in posttranslational modification of a target protein via regulating its phosphorylation. Collectively, our data indicate that CMDL-1 may play an anti-apoptotic role in DOX cardiotoxicity by regulating Drp1 S637 phosphorylation. Thus, CMDL-1 may serve as a potential therapeutic target in DOX cardiotoxicity.

12.
Mol Ther Nucleic Acids ; 25: 220-236, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34458007

ABSTRACT

Cardiovascular disease (CVD) is one of the most important diseases endangering human life. The pathogenesis of CVDs is complex. Pyroptosis, which differs from traditional apoptosis and necrosis, is characterized by cell swelling until membrane rupture, resulting in the release of cell contents and activation of a strong inflammatory response. Recent studies have revealed that inflammation and pyroptosis play important roles in the progression of CVDs. Noncoding RNAs (ncRNAs) are considered promising biomarkers and potential therapeutic targets for the diagnosis and treatment of various diseases, including CVDs. Growing evidence has revealed that ncRNAs can mediate the transcriptional or posttranscriptional regulation of pyroptosis-related genes by participating in the pyroptosis regulatory network. The role and molecular mechanism of pyroptosis-regulating ncRNAs in cardiovascular pathologies are attracting increasing attention. Here, we summarize research progress on pyroptosis and the role of ncRNAs, particularly microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the regulation of pyroptosis in CVD pathologies. Identifying these disease-related ncRNAs is important for understanding the pathogenesis of CVDs and providing new targets and ideas for their prevention and treatment.

13.
Mol Ther Nucleic Acids ; 23: 101-118, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33335796

ABSTRACT

Cardiovascular diseases (CVDs) remain the world's leading cause of death. Cardiomyocyte autophagy helps maintain normal metabolism and functioning of the heart. Importantly, mounting evidence has revealed that autophagy plays a dual role in CVD pathology. Under physiological conditions, moderate autophagy maintains cell metabolic balance by degrading and recycling damaged organelles and proteins, and it promotes myocardial survival, but excessive or insufficient autophagy is equally deleterious and contributes to disease progression. Noncoding RNAs (ncRNAs) are a class of RNAs transcribed from the genome, but most ncRNAs do not code for functional proteins. In recent years, increasingly, various ncRNAs have been identified, and they play important regulatory roles in the physiological and pathological processes of organisms, as well as in autophagy. Thus, determining whether ncRNA-regulated autophagy plays a protective role in CVDs or promotes their progression can help us to develop ncRNAs as therapeutic targets in autophagy-related CVDs. In this review, we briefly summarize the regulatory roles of several important ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the autophagy of various CVDs to provide a theoretical basis for the etiology and pathogenesis of CVDs and develop novel therapies to treat CVDs.

14.
Transl Cancer Res ; 10(12): 5065-5075, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35116358

ABSTRACT

BACKGROUND: Breast invasive carcinoma (BRCA) has a poor prognosis. Numerous studies have shown that SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) is involved in the initiation and progression of many cancers. This study aims to reveal the potential mechanism of SETDB1 in the development and progression of BRCA. METHODS: The ONCOMINE database, TIMER database, UALCAN database and GEPIA database were used to analyze the expression of SETDB1 in human cancers. We evaluated the expression level of SETDB1 in cell lines by quantitative real-time polymerase chain reaction (qPCR), and the survival analysis of SETDB1 was performed on PrognoScan and Kaplan-Meier plotter websites. The upstream regulator was obtained from starBase database. RESULTS: We confirmed that SETDB1 messenger RNA (mRNA) level showed high expression in breast cell lines, and we also found that SETDB1 showed high expression in many types of cancers. Moreover, SETDB1 overexpression was positively correlated with poor prognosis in BRCA. Furthermore, we first predicted miR-29a-3p was a potential upstream regulator of SETDB1 in BRCA. Our findings indicated that SETDB1 might play a carcinogenic role by increasing the infiltration of immune cell and influencing immune checkpoint expression. CONCLUSIONS: This study suggested that miR-29a-3p can mediate the expression of SETDB1 with poor prognosis and tumor immune infiltration in BRCA.

15.
Front Mol Biosci ; 7: 184, 2020.
Article in English | MEDLINE | ID: mdl-32850971

ABSTRACT

Compared with the research on DNA damage, there are fewer studies on RNA damage, and the damage mechanism remains mostly unknown. Recent studies have shown that RNA is more vulnerable to damage than DNA when the cells are exposed to endogenous and exogenous insults. RNA injury may participate in a variety of disease occurrence and development. RNA not only has important catalytic functions and other housekeeping functions, it also plays a decisive role in the translation of genetic information and protein biosynthesis. Various kinds of stressors, such as ultraviolet, reactive oxygen species and nitrogen, can cause damage to RNA. It may involve in the development and progression of diseases. In this review, we focused on the relationship between the RNA damage and disease as well as the research progress on the mechanism of RNA damage, which is of great significance for the pathogenesis, diagnosis, and treatment of related diseases.

16.
Int J Mol Sci ; 21(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708667

ABSTRACT

In the history of nucleic acid research, DNA has always been the main research focus. After the sketch of the human genome was completed in 2000, RNA has been started to gain more attention due to its abundancies in the cell and its essential role in cellular physiology and pathologies. Recent studies have shown that RNAs are susceptible to oxidative damage and oxidized RNA is able to break the RNA strand, and affect the protein synthesis, which can lead to cell degradation and cell death. Studies have shown that RNA oxidation is one of the early events in the formation and development of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. However, its molecular mechanism, as well as its impact on these diseases, are still unclear. In this article, we review the different types of RNA oxidative damage and the neurodegenerative diseases that are reported to be associated with RNA oxidative damage. In addition, we discuss recent findings on the association between RNA oxidative damage and the development of neurodegenerative diseases, which will have great significance for the development of novel strategies for the prevention and treatment of these diseases.


Subject(s)
Neurodegenerative Diseases/metabolism , Oxidative Stress , RNA/metabolism , Animals , Cell Death , Humans , Oxidation-Reduction
17.
J Mol Cell Cardiol ; 138: 49-58, 2020 01.
Article in English | MEDLINE | ID: mdl-31751566

ABSTRACT

Cardiovascular disease (CVD) is one of the most threatening diseases to human health and life, and the number of patients is increasing year by year. Thus, it is of great significance to study the pathogenesis, prevention and treatment of CVDs. The occurrence and development of CVDs involve dynamic, complex and delicate intracellular processes and the pathogenesis is not entirely clear. In contrast to genetic mutations, most of the protein post-translational modifications (PTMs) are reversible, and can affect the activity, stability, subcellular localization, protein-protein interaction etc., of the substrate targets, emerging as key mediators of a number of CVD progression. Under pathological conditions, the PTMs undergo aberrant balances which cause changes of the substrate target proteins in expression level, localization and capacity to activate downstream signaling pathways. Therefore, new approaches can be created aiming to correct the abnormal PTM alterations in treating CVDs. This review summarizes some of the more recent advances in PTMs, focusing on SUMOylation, neddylation, succinylation, and prenylation, and the effect of these modifications on cardiovascular function and progression, which may provide potential targets for future therapeutics.


Subject(s)
Cardiovascular Diseases/metabolism , Prenylation , Protein Processing, Post-Translational , Succinic Acid/metabolism , Sumoylation , Ubiquitination , Animals , Humans
18.
Oncol Lett ; 18(6): 5691-5698, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31788041

ABSTRACT

Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.

19.
Clin Sci (Lond) ; 133(9): 1067-1084, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31015359

ABSTRACT

Accumulation of reactive oxygen species is a common phenomenon in cardiac stress conditions, for instance, coronary artery disease, aging-related cardiovascular abnormalities, and exposure to cardiac stressors such as hydrogen peroxide (H2O2). Mitochondrial protein 18 (Mtp18) is a novel mitochondrial inner membrane protein, shown to involve in the regulation of mitochondrial dynamics. Although Mtp18 is abundant in cardiac muscles, its role in cardiac apoptosis remains elusive. The present study aimed to detect the role of Mtp18 in H2O2-induced mitochondrial fission and apoptosis in cardiomyocytes. We studied the effect of Mtp18 in cardiomyocytes by modulating its expression with lentiviral construct of Mtp18-shRNA and Mtp18 c-DNA, respectively. We then analyzed mitochondrial morphological dynamics with MitoTracker Red staining; apoptosis with terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) and cell death detection assays; and protein expression with immunoblotting. Here, we observed that Mtp18 could regulate oxidative stress- mediated mitochondrial fission and apoptosis in cardiac myocytes. Mechanistically, we found that Mtp8 induced mitochondrial fission and apoptosis by enhancing dynamin-related protein 1 (Drp1) accumulation. Conversely, knockdown of Mtp18 interfered with Drp1-associated mitochondrial fission and subsequent activation of apoptosis in both HL-1 cells and primary cardiomyocytes. However, overexpression of Mtp18 alone was not sufficient to execute apoptosis when Drp1 was minimally expressed, suggesting that Mtp18 and Drp1 are interdependent in apoptotic cascade. Together, these data highlight the role of Mtp18 in cardiac apoptosis and provide a novel therapeutic insight to minimize cardiomyocyte loss via targetting mitochondrial dynamics.


Subject(s)
Apoptosis/physiology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress/physiology , Animals , Hydrogen Peroxide/metabolism , Mitochondrial Dynamics/physiology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Rats , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...