Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 206(5): 208, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587620

ABSTRACT

Cistanche deserticola is a precious Chinese medicinal material with extremely high health care and medicinal value. In recent years, the frequent occurrence of stem rot has led to reduced or even no harvests of C. deserticola. The unstandardized use of farm chemicals in the prevention and control processes has resulted in excessive chemical residues, threatening the fragile desert ecological environment. Therefore, it is urgent to explore safe and efficient prevention and control technologies. Biocontrol agents, with the advantages of safety and environment-friendliness, would be an important idea. The isolation, screening and identification of pathogens and antagonistic endophytic bacteria are always the primary basis. In this study, three novel pathogens causing C. deserticola stem rot were isolated, identified and pathogenicity tested, namely Fusarium solani CPF1, F. proliferatum CPF2, and F. oxysporum CPF3. For the first time, the endophytic bacteria in C. deserticola were isolated and identified, of which 37 strains were obtained. Through dual culture assay, evaluation experiment and tissue culture verification, a biocontrol candidate strain Bacillus atrophaeus CE6 with outstanding control effect on the stem rot was screened out. In the tissue culture system, CE6 showed excellent control effect against F. solani and F. oxysporum, with the control efficacies reaching 97.2% and 95.8%, respectively, indicating its great potential for application in the production. This study is of great significance for the biocontrol of plant stem rot and improvement of the yield and quality of C. deserticola.


Subject(s)
Cistanche , Bacteria/genetics , Environment , Farms , Plant Stems
2.
J AOAC Int ; 104(3): 818-826, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33450009

ABSTRACT

BACKGROUND: Currently, although Inula nervosa Wall is substantially investigated, little is understood about blossoms of Inula nervosa Wall (BINW). OBJECTIVE: In this work, we systematically investigated the antioxidant activity of the extract from BINW by various standard assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical ability, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt radical cation (ABTS), and ferric reducing antioxidant potential (FRAP). METHODS: Chemical compounds were tentatively identified through an UHPLC-QTOF-MS system. Furthermore, the contents of nine compounds were detected with UHPLC method coupled with photodiode array (PDA) detector. By carefully analyzing the quantitative data via clusters analysis and principal component analysis (PCA). RESULTS: Forty-six compounds were tentatively identified, and our results showed that nine compound samples in 21 batches of BINW collected from different areas could be differentiated and analyzed by a heatmap visualization. In addition, the contents of nine compounds (flavonoids, phenolic acids) exhibited a total of higher amounts and better antioxidant activities from Yunnan than those from the other three origins. CONCLUSIONS: Our study not only developed a powerful platform to explain the difference between traditional Chinese medicines species that are closely related through the chemometric and chemical profiling, but also presented a useful method to establish quality criteria of BINW with multiple origins. HIGHLIGHTS: To characterize the BINW in detail, we not only performed DPPH, FRAP, and ABTS assays to investigate its antioxidant activity, but also established UHPLC-QTOF-MS/MS- and UHPLC-PDA-based methods to comprehensively identify and qualitatively analyze its components.


Subject(s)
Inula , Antioxidants , China , Flowers , Plant Extracts , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...