Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(11): e2311375, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38085673

ABSTRACT

Twin boundary (TB) engineering provides exciting opportunities to tune the performance levels of metal-based electrocatalysts. However, the controllable construction of TB greatly relies on surfactants, blocking active sites, and electron transfer by surfactants. Here, a surfactant-free and facile strategy is proposed for synthesizing copper (Cu) nanocatalysts with dense hierarchical TB networks (HTBs) by the rapid thermal reductions in metastable CuO nanosheets in H2 . As revealed by in situ transmission electron microscopy, the formation of HTBs is associated with the fragmentation of nanosheets in different directions to generate abundant crystal nuclei and subsequently unconventional crystal growth through the collision and coalescence of nuclei. Impressively, the HTBs endow Cu with excellent electrocatalytic performance for direct nitrate-ammonia conversion, superior to that of Cu with a single-oriented TB and without TB. It is discovered that the HTBs induce the formation of compressive strains, thereby creating a synergistic effect of TBs and strains to efficiently tune the binding energies of Cu with nitrogen intermediates (i.e., NO2 *) and thus promote the tandem reaction process of NO3 - -to-NO2 - and subsequent NO2 - -to-NH3 electrocatalysis. This work demonstrates the crucial role of HTBs for boosting electrocatalysis via the synergistic effect of TBs and strains.

2.
J Am Chem Soc ; 146(5): 2967-2976, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38155548

ABSTRACT

Cobalt-based spinel oxides (i.e., Co3O4) are emerging as low-cost and selective electrocatalysts for the electrochemical nitrate reduction reaction (NO3-RR) to ammonia (NH3), although their activity is still unsatisfactory and the genuine active site is unclear. Here, we discover that the NO3-RR activity of Co3O4 is highly dependent on the geometric location of the Co site, and the NO3-RR prefers to occur at octahedral Co (CoOh) rather than tetrahedral Co (CoTd) sites. Moreover, CoOhO6 is electrochemically transformed to CoOhO5 along with the formation of O vacancies (Ov) during the process of NO3-RR. Both experimental and theoretic results reveal that in situ generated CoOhO5-Ov configuration is the genuine active site for the NO3-RR. To further enhance the activity of CoOh sites, we replace inert CoTd with different contents of Cu2+ cations, and a volcano-shape correlation between NO3-RR activity and electronic structures of CoOh is observed. Impressively, in 1.0 M KOH, (Cu0.6Co0.4)Co2O4 with optimized CoOh sites achieves a maximum NH3 Faradaic efficiency of 96.5% with an ultrahigh NH3 rate of 1.09 mmol h-1 cm-2 at -0.45 V vs reversible hydrogen electrode, outperforming most of other reported nonprecious metal-based electrocatalysts. Clearly, this work paves new pathways for boosting the NO3-RR activity of Co-based spinels by tuning local electronic structures of CoOh sites.

3.
Angew Chem Int Ed Engl ; 62(40): e202309732, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37580313

ABSTRACT

Heteroatom doping has emerged as a highly effective strategy to enhance the activity of metal-based electrocatalysts toward the oxygen evolution reaction (OER). It is widely accepted that the doping does not switch the OER mechanism from the adsorbate evolution mechanism (AEM) to the lattice-oxygen-mediated mechanism (LOM), and the enhanced activity is attributed to the optimized binding energies toward oxygen intermediates. However, this seems inconsistent with the fact that the overpotential of doped OER electrocatalysts (<300 mV) is considerably smaller than the limit of AEM (>370 mV). To determine the origin of this inconsistency, we select phosphorus (P)-doped nickel-iron mixed oxides as the model electrocatalysts and observe that the doping enhances the covalency of the metal-oxygen bonds to drive the OER pathway transition from the AEM to the LOM, thereby breaking the adsorption linear relation between *OH and *OOH in the AEM. Consequently, the obtained P-doped oxides display a small overpotential of 237 mV at 10 mA cm-2 . Beyond P, the similar pathway transition is also observed on the sulfur doping. These findings offer new insights into the substantially enhanced OER activity originating from heteroatom doping.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35159817

ABSTRACT

To achieve the full utilization of waste rice noodle (WRN) without secondary pollution, activated carbon (AC) and carbon quantum dots/titanium dioxide (CQDs/TiO2) composite were simultaneously synthesized by using WRN as raw material. Both of the two materials showed potential applications in water pollution control. The AC based on WRN displayed a porous spherical micro-morphology, which could absorb heavy metal elements like Pb(II) and Cr(VI) efficiently, with a maximum equilibrium uptake of 12.08 mg·g-1 for Pb(II) and 9.36 mg·g-1 for Cr(VI), respectively. The adsorption of the resulted AC could match the Freundlich adsorption isotherm and the pseudo-second-order kinetics mode. On the other hand, the CQDs/TiO2 composite based on WRN displayed a high efficient photocatalytic degradation effect on various water-soluble dyes such as methylene blue, malachite green, methyl violet, basic fuchsin, and rhodamine B under visible light irradiation, which showed better photocatalytic performance than commercial TiO2. The introduction of CQDs based on WRN to TiO2 could result in efficient electron-hole pair separation and enable more photogenerated electrons to reduce O2 and more photogenerated holes to oxidize H2O or OH-, which could cause stronger abilities in producing O2·- and ·OH radical and better photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...