Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 586: 640-646, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33183753

ABSTRACT

The charge recombination on the interfaces of TiO2/quantum dots (QDs)/electrolyte is a key factor limiting the efficiency of quantum dot-sensitized solar cells (QDSSCs). Construction of double-layer barrier structure of ZnS/QDs/ZnS is a vital strategy to suppress the interfacial charge recombination. However, a large lattice mismatch (12%) at CdSe/ZnS interfaces causes CdSe to grow slowly on TiO2/ZnS mesoporous film, weakening the interaction between QDs and mesoporous film, which reducing the efficiency of CdSe QDSSCs with double ZnS barrier layers. Applying a voltage of 2 V in successive ionic layer adsorption reaction (VASILAR) to create an electric field, which assists Cd2+ and SeSO32- ions rapidly diffuse into the TiO2/ZnS mesoporous film to react forming CdSe QDs at room temperature. Optimizing the number of CdSe QDs deposition layers and combine with ZnS double-layer barrier structure, a best PCE of 4.34% for ZnS/CdSe/ZnS QDSSCs is achieved. This study gives a fast and simple approach to inhibit interfacial charge recombination to construct high performance CdSe QDSSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...