Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1293368, 2024.
Article in English | MEDLINE | ID: mdl-38449855

ABSTRACT

Infertility affects approximately 10-15% of couples worldwide who are attempting to conceive, with male infertility accounting for 50% of infertility cases. Male infertility is related to various factors such as hormone imbalance, urogenital diseases, environmental factors, and genetic factors. Owing to its relationship with genetic factors, male infertility cannot be diagnosed through routine examination in most cases, and is clinically called 'idiopathic male infertility.' Recent studies have provided evidence that microRNAs (miRNAs) are expressed in a cell-or stage-specific manner during spermatogenesis. This review focuses on the role of miRNAs in male infertility and spermatogenesis. Data were collected from published studies that investigated the effects of miRNAs on spermatogenesis, sperm quality and quantity, fertilization, embryo development, and assisted reproductive technology (ART) outcomes. Based on the findings of these studies, we summarize the targets of miRNAs and the resulting functional effects that occur due to changes in miRNA expression at various stages of spermatogenesis, including undifferentiated and differentiating spermatogonia, spermatocytes, spermatids, and Sertoli cells (SCs). In addition, we discuss potential markers for diagnosing male infertility and predicting the varicocele grade, surgical outcomes, ART outcomes, and sperm retrieval rates in patients with non-obstructive azoospermia (NOA).


Subject(s)
Infertility, Male , MicroRNAs , Humans , Male , MicroRNAs/genetics , Semen , Infertility, Male/diagnosis , Infertility, Male/genetics , Spermatogenesis/genetics , Phenotype , Biomarkers
2.
Microsc Microanal ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38366381

ABSTRACT

Atom probe tomography requires needle-shaped specimens with a diameter typically below 100 nm, making them both very fragile and reactive, and defects (notches at grain boundaries or precipitates) are known to affect the yield and data quality. The use of a conformal coating directly on the sharpened specimen has been proposed to increase yield and reduce background. However, to date, these coatings have been applied ex situ and mostly are not uniform. Here, we report on the controlled focused-ion beam in situ deposition of a thin metal film on specimens immediately after specimen preparation. Different metallic targets e.g. Cr were attached to a micromanipulator via a conventional lift-out method and sputtered using Ga or Xe ions. We showcase the many advantages of coating specimens from metallic to nonmetallic materials. We have identified an increase in data quality and yield, an improvement of the mass resolution, as well as an increase in the effective field-of-view. This wider field-of-view enables visualization of the entire original specimen, allowing to detect the complete surface oxide layer around the specimen. The ease of implementation of the approach makes it very attractive for generalizing its use across a very wide range of atom probe analyses.

3.
Sci Rep ; 14(1): 93, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168591

ABSTRACT

Periodontitis is a chronic inflammatory disease that affects the tissues surrounding the teeth, including the gums and the bones supporting the teeth. Early detection and intervention are crucial for effective management of periodontitis. Our study aims to identify a diagnostic biomarker for periodontitis and explore the pathways associated with the occurrence and development of periodontitis. The expression of gingival tissue from periodontitis and healthy control were downloaded from the Gene Expression Omnibus. The weighted gene co-expression network analysis (WGCNA) were used to analyze module genes associated with periodontitis and DESeq2 were performed to identify differently expressed genes (DEGs) between periodontitis and healthy control. Then the candidate genes were obtained by intersecting the genes from interest modules and DEGs. Functional enrichment analysis was performed using gene ontology and kyoto encyclopedia of gene and genomes, followed by the protein-protein interaction (PPI) network analysis. The hub genes were identified by the cytoCNA plugin in Cytoscape. Finally, immunohistochemical staining of the hub genes was performed to validate the findings. WGCNA analysis found that the expression of the MEblack module was significantly higher in individuals with periodontitis compared to those in the healthy control group. A total of 888 DEGs, including 750 upregulated and 138 downregulated genes, were identified. Finally, 427 candidate genes were identified potentially associated with periodontitis after intersecting the DEGs and the black module genes. Several critical signaling pathways were identified associated with periodontitis by functional enrichment analysis, including cytokine-cytokine receptor interaction, neutrophil extracellular trap formation, Staphylococcus aureus infection, and Interleukin-17 signaling pathway. The PPI network analysis revealed that C-X-C motif chemokine ligand 5 (CXCL5) and C-X-C motif chemokine ligand 6 (CXCL6) could play an important role in the process of periodontitis. The gene expression level of CXCL5 and CXCL6 detected using immunohistochemical verified the findings. In conclusion, we found that CXCL5 and CXCL6 are closely associated with the occurrence of periodontitis. Our present pilot study suggests that CXCL5 and CXCL6 have the potential to be used as a diagnostic biomarker of periodontitis.


Subject(s)
Gene Regulatory Networks , Periodontitis , Humans , Ligands , Pilot Projects , Periodontitis/diagnosis , Periodontitis/genetics , Gene Expression Profiling , Biomarkers , Computational Biology , Chemokines/genetics
4.
Front Bioeng Biotechnol ; 11: 1250533, 2023.
Article in English | MEDLINE | ID: mdl-37781529

ABSTRACT

Achilles tendon (AT) injury is one of the most common tendon injuries, especially in athletes, the elderly, and working-age people. In AT injury, the biomechanical properties of the tendon are severely affected, leading to abnormal function. In recent years, many efforts have been underway to develop effective treatments for AT injuries to enable patients to return to sports faster. For instance, several new techniques for tissue-engineered biological augmentation for tendon healing, growth factors (GFs), gene therapy, and mesenchymal stem cells were introduced. Increasing evidence has suggested that GFs can reduce inflammation, promote extracellular matrix production, and accelerate AT repair. In this review, we highlighted some recent investigations regarding the role of GFs, such as transforming GF-ß(TGF-ß), bone morphogenetic proteins (BMP), fibroblast GF (FGF), vascular endothelial GF (VEGF), platelet-derived GF (PDGF), and insulin-like GF (IGF), in tendon healing. In addition, we summarized the clinical trials and animal experiments on the efficacy of GFs in AT repair. We also highlighted the advantages and disadvantages of the different isoforms of TGF-ß and BMPs, including GFs combined with stem cells, scaffolds, or other GFs. The strategies discussed in this review are currently in the early stages of development. It is noteworthy that although these emerging technologies may potentially develop into substantial clinical treatment options for AT injury, definitive conclusions on the use of these techniques for routine management of tendon ailments could not be drawn due to the lack of data.

5.
Clin Pharmacokinet ; 62(10): 1493-1507, 2023 10.
Article in English | MEDLINE | ID: mdl-37632631

ABSTRACT

BACKGROUND: Personalisation strategies of ovarian stimulation for in vitro fertilisation (IVF)/ intracytoplasmic sperm injection (ICSI) treatments using exogenous follicle-stimulating hormone (FSH) have been extensively studied over the past 20 years. This research aimed to develop a FSH population pharmacokinetic (PPK) model taking into account the contribution of gene polymorphisms in Chinese reproductive-age women. METHODS: Data from 173 patients undergoing GnRH agonist down-regulation long protocols of IVF/ICSI treatment were collected. PPK analysis was subsequently conducted using the nonlinear mixed-effect model (NONMEM) software. Several covariates, including 18 single nucleotide polymorphisms, demographic factors and biological characteristics, were evaluated. The final PPK model was extensively validated using bootstrapping and normalised prediction error distribution, as well as external validation on an independent group of 35 patients. RESULTS: FSH PPK was accurately described by a one-compartment model with first-order absorption. The typical population value of apparent clearance was estimated to be 0.81 L/h [relative standard errors (RSE) 5.3%] with an inter-individual variability (IIV) of 16.0%. The typical apparent distribution volume was 8.36 L (RSE 9.7%, 59.7% IIV), and the absorption rate constant was estimated to be 0.0444 h-1 (RSE 9.1%). Body weight, basal prolactin concentration and the gene ADIPOQ (rs1501299) showed a significant covariate effect on the FSH clearance rate and exposure concentration. Genotypes of THADA (rs12478601) significantly influenced the distribution volume. Simulation results indicated that patients with the TT genotype of THADA (rs12478601) required a longer time to reach steady state and had less fluctuation in FSH levels. Model evaluations showed that the final model accurately and precisely described the observed data and demonstrated effective prediction performance. CONCLUSION: PPK models of FSH have been developed, which could potentially be used for FSH dosage individualisation in the clinical setting. CLINICAL TRIAL REGISTRATION: This study has been registered with the Chinese Clinical Trials Registry (ChiCTR2100049142).


Subject(s)
Follicle Stimulating Hormone , Prolactin , Humans , Female , Male , Follicle Stimulating Hormone/therapeutic use , Prolactin/genetics , Semen , Ovulation Induction/methods , Polymorphism, Single Nucleotide , Neoplasm Proteins , Adiponectin
6.
BMC Med Genomics ; 14(1): 151, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103024

ABSTRACT

BACKGROUND: Milroy disease (MD) is a rare, autosomal-dominant disorder. Variants in the Fms-related tyrosine kinase 4 (FLT4/VEGFR3) gene cause the symptoms of this disease. In this report, we investigated the variant in a large Chinese family with MD. METHODS: We conducted Sanger sequencing of exons 17-26 of FLT4/VEGFR3 (NM_182925.4). We assessed its pathogenicity based on the ACMG criteria and predicted it with an in silico program. RESULTS: A heterozygous substitution (NM_182925.4 (FLT4/VEGFR3):c.2774 T>A, p. (Val925Glu)) was detected in all patients with MD but not in any healthy controls. The variant was evaluated as pathogenic according to the ACMG criteria and was predicted to be pathogenic using an in silico program. CONCLUSIONS: In this report, we described a large family with MD caused by a missense variant in FLT4/VEGFR3 (NM_182925.4 (FLT4/VEGFR3_v001):c.2774 T>A, p. (Val925Glu)). There are phenotypic heterogeneities among family members, and further research should be conducted to explore the possible reasons.


Subject(s)
Vascular Endothelial Growth Factor Receptor-3
7.
Ophthalmic Genet ; 41(4): 338-340, 2020 08.
Article in English | MEDLINE | ID: mdl-32393149

ABSTRACT

BACKGROUND: Norrie disease is a rare X-linked recessive disorder in affected males. The typical features are congenital blindness, progressive hearing impairment, and, in some cases, some degree of mental retardation, microphthalmia, microcornea, growth failure, and seizures. Norrie disease is caused by mutations in the Norrie disease pseudoglioma gene (NDP), which encodes the Norrin protein that plays a crucial role in vascular development, neural cell differentiation, and proliferation in the retina and cerebellum. The aim of the present study was to identify the genetic cause of the disease and the phenotypic characteristics of the patients in an affected Chinese family. MATERIALS AND METHODS: A Chinese family with Norrie disease was studied, and clinical phenotypes of the proband were observed. With informed consent from the patients' family, blood samples from family members were collected, genomic DNA was extracted, and Sanger sequencing was performed to identify the disease-causing mutation. RE: sults: The c.287 G > T mutation of NDP was identified by Sanger sequencing and resulted in p.Cys96Phe. The pathogenicity prediction was performed by MutationTaster, Polyphen-2, SIFT, and PROVEAN, all of which suggested that the mutation is disease-causing and may be responsible for the phenotypes of Norrie disease. CONCLUSION: The c.287 G > T of NDP is a novel mutation responsible for Norrie disease in a Chinese family.


Subject(s)
Asian People/genetics , Blindness/congenital , Eye Proteins/genetics , Genetic Diseases, X-Linked/pathology , Mutation, Missense , Nerve Tissue Proteins/genetics , Nervous System Diseases/pathology , Retinal Degeneration/pathology , Spasms, Infantile/pathology , Blindness/genetics , Blindness/pathology , Child , Female , Genetic Diseases, X-Linked/genetics , Humans , Infant , Infant, Newborn , Male , Nervous System Diseases/genetics , Pedigree , Phenotype , Retinal Degeneration/genetics , Spasms, Infantile/genetics
8.
Mol Genet Genomic Med ; 8(10): e1436, 2020 10.
Article in English | MEDLINE | ID: mdl-33460241

ABSTRACT

OBJECTIVE: This study aimed to identify the disease-causing mutation of congenital cataract disease in a large northeastern Chinese family. MATERIALS AND METHODS: The subjects' peripheral blood was collected, their genomic DNA was extracted, mutation screening of candidate genes was performed using polymerase chain reaction, and the amplified products were sequenced. Recombinant C-terminal enhanced green fluorescent protein-tagged wild-type or mutant CRYGD was expressed in HEK293T cells, and the expression pattern was observed under a fluorescence microscope. The CRYGD protein mutation was analyzed via bioinformatics analysis. RESULTS: c.475delG, a novel frameshift mutation in CRYGD, was identified in the affected family members. This mutation causes premature termination of the polypeptide, resulting in truncated p.(Ala159ProfsTer9). According to the bioinformatics analysis results, compared with wild-type CRYGD, p.(Ala159ProfsTer9) exhibits significantly decreased hydrophilicity. Fluorescence microscopy revealed that p.(Ala159ProfsTer9) aggregates in the cell in the form of granular deposits. CONCLUSION: In this study, the novel frameshift mutation c.475delG, p.(Ala159ProfsTer9) in CRYGD was identified to cause congenital cataracts in a large Chinese family; increased hydrophobicity of p.(Ala159ProfsTer9) protein may be the underlying mechanism.


Subject(s)
Cataract/genetics , Frameshift Mutation , gamma-Crystallins/genetics , Cataract/pathology , Female , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Male , Middle Aged , Pedigree , Protein Domains , Protein Transport , gamma-Crystallins/chemistry , gamma-Crystallins/metabolism
9.
Materials (Basel) ; 12(20)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614803

ABSTRACT

Al-Bi-Sn-Cu composite powders for hydrogen generation were designed from the calculated phase diagram and prepared by the gas atomization process. The morphologies and structures of the composite powders were investigated using X-ray diffraction (XRD) and a scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX) spectroscopy, and the results indicate that the Cu additive enhanced the phase separation between the Al-rich phase and the (Bi, Sn)-rich phase. The hydrogen generation performances were investigated by reacting the materials with distilled water. The Al-Bi-Sn-Cu powders reveal a stable hydrogen generation rate, and the Al-10Bi-7Sn-3Cu (wt%) powder exhibits the best hydrogen generation performance in 50 °C distilled water which reaches 856 mL/g in 800 min. In addition, the antioxidation properties of the powders were also studied. The Al-10Bi-7Sn-3Cu (wt%) powder has a good resistance to oxidation and moisture, which shows great potential for being the hydrogen source for fuel cell applications.

10.
J Theor Biol ; 456: 84-90, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30096405

ABSTRACT

Lung cancer is the leading cause of cancer-related death worldwide. Most lung cancer is non-small cell lung cancer (NSCLC), in which malignant cells form in the lung epithelium. Mutations in multiple genes and environmental factors both contribute to NSCLC, and although some NSCLC susceptibility genes have been characterized, the pathogenesis of this disease remains unclear. To identify genes conferring NSCLC risk and determine their associated pathological mechanism, we combined genome-wide haplotype associated analysis with gene prioritization using 224,677 SNPs in 37 NSCLC cell lines and 116 unrelated European individuals. Five candidate genes were identified: ESR1, TGFBR1, INSR, CDH3, and MAP3K5. All of these have previously been implicated in NSCLC, with the exception of CDH3, which can therefore be considered a novel indicator of NSCLC risk. Functional annotation confirmed the relationship between these five genes and NSCLC. Our findings are indicative of the underlying pathological mechanisms of NSCLC and provide information to support future directions in diagnosing and treating NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Case-Control Studies , Cell Line, Tumor , Databases, Genetic , Genes, Neoplasm , Genetic Association Studies/methods , Genetic Predisposition to Disease , Genome-Wide Association Study , Haplotypes , Humans , Polymorphism, Single Nucleotide
11.
Oncotarget ; 8(65): 108355-108374, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29312536

ABSTRACT

Interaction between genetic and epigenetic mechanisms may lead to autoimmune diseases. The features of these diseases show familial aggregation. The generality and specificity are keys to studying pathogenesis and etiology of them. This research integrated data of genetics and epigenetics, to find disease-related genes based on the levels of expression and regulation, and explored then to the shared and specific mechanism of them by analyzing shared and specific pathways of common four autoimmune diseases, including Type 1 Diabetes Mellitus (T1D), Multiple Sclerosis (MS), Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). The results showed that Lysosome and Fc gamma R-mediated phagocytosis are shared pathways of the four diseases. It means that the occurrence and development of them may associate with lysosomes and phagocytosis. And there were 2 pathways are shared pathways of three diseases, ribosome pathway associated with susceptibility to MS, RA and SLE, and Pathogenic Escherichia coli infection associated with susceptibility to T1D, MS and RA; 9 pathways are shared pathways of two diseases. The corporate underlying causes of these diseases may be these shared pathways activated. Furthermore, we found that T1D-related specific pathways (Insulin signaling,etc.) were 9, MS (Proteasome,etc.) is also 9, RA and SLE is 10 and 6 respectively. These pathways could help us to reveal shared and specific mechanisms of the four diseases.

12.
Neuroscience ; 340: 398-410, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27840232

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease/genetics , Datasets as Topic , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide
13.
Sci Rep ; 5: 17428, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26616602

ABSTRACT

In this study, a novel self-assembling hydrogen generation powder comprised of 80Al-10Bi-10Sn wt.% was prepared using the gas atomization method and then collected in an air environment. The morphological and hydrolysis properties of the powders were investigated. The results indicated that the powders formed unique core/shell microstructures with cracked surfaces and (Bi, Sn)-rich phases distributed on the Al grain boundaries. The powders exhibited good oxidation resistance and reacted violently with distilled water at temperatures as low as 0 °C. Furthermore, at 30 °C, the powders exhibited a hydrogen conversion yield of 91.30% within 16 minutes. The hydrogen produced by this powder could be directly used in proton exchange membrane fuel cells. The mechanisms of the hydrolysis reactions were also analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...