Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 630(Pt B): 828-843, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36356449

ABSTRACT

HYPOTHESIS: The surface of silica nanoparticles (NP) may be covalently grafted with two amino ligands to balance colloidal stability and interfacial activity via formation of in situ Janus particles. The modified NP may be combined with a like-charged diamine surfactant to create ultra-stable CO2 foam at low NP concentrations. EXPERIMENTS: The NP colloidal stability was measured up to 80 °C in 230 g/L TDS brine with dynamic light scattering. The NP surface was characterized using zeta potential, TEM, TGA, conductometric and potentiometric titrations, NMR and interfacial measurement. CO2/brine foam was generated at 60-80 °C and 15 MPa and apparent viscosity was measured vs foam quality. The foam stability was measured in-situ with an optical microscope. FINDINGS: Upon adding only 0.1 wt% NP, ultra-stable CO2 foam was observed at 60 °C with a bubble coarsening rate 3 orders of magnitude lower than with surfactant alone. Foam bubbles were spherical with NP present, but became polyhedral for the much less stable surfactant-only foams. For this novel like-charged surfactant-NP system, the limited surfactant adsorption on the NP resulted in NP stabilized CO2 foam, while maintaining NP colloidal stability at high surfactant concentrations and high salinity, providing a new perspective of NP-surfactant design.


Subject(s)
Multifunctional Nanoparticles , Water , Water/chemistry , Carbon Dioxide/chemistry , Surface-Active Agents/chemistry
2.
J Colloid Interface Sci ; 608(Pt 2): 1401-1413, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34749135

ABSTRACT

HYPOTHESIS: Surface active anionic nanoparticles (NPs) with strategically designed covalent ligands may be combined with a liked-charged surfactant to form a highly elastic gas-water interface leading to highly stable gas/water foams. EXPERIMENTS: The colloidal stability of the NPs was determined by dynamic light scattering, and the surface elastic dilational modulus E' of the interface by sinusoidal oscillation of a pendant droplet at 0.1 Hz, which was superimposed on large-amplitude compression-expansion cycles. The foam stability was measured with optical microscopy of the bubble size distribution and from the macroscopic foam height. FINDINGS: The NPs played the key role the formation of a highly elastic air-water interface with a high E' despite a surfactant level well above the critical micelle concentration. Unlike the case for most previous studies, the NP amphiphilicity was essentially independent of the surfactant given the very low adsorption of the surfactant on the like-charged NP surfaces. With high E' values, both coalescence and coarsening were reduced leading to highly foam up to 80 °C. However, the surfactant facilitated foam generation at much lower shear rates than with NPs alone. The tuning of NP surfaces with ligands for colloidal stability in brine and simultaneously high amphiphilicity at the gas-water interface, over a wide range in surfactant concentration, is of broad interest for enabling the design of highly stable foams.

SELECTION OF CITATIONS
SEARCH DETAIL
...