Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters










Publication year range
1.
ACS Synth Biol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767944

ABSTRACT

Cadaverine is a critical C5 monomer for the production of polyamides. Pyridoxal 5'-phosphate (PLP), as a crucial cofactor for the key enzyme lysine decarboxylase in the cadaverine biosynthesis pathway, has seen a persistent shortage, leading to limitations in cadaverine production. To address this issue, a dual-pathway strategy was implemented, synergistically enhancing both endogenous and heterologous PLP synthesis modules and resulting in improved PLP synthesis. Subsequently, a growth-stage-dependent molecular switch was introduced to balance the precursor competition between PLP synthesis and cell growth. Additionally, a PLP sensor-based negative feedback circuit was constructed by integrating a newly identified PLP-responsive promoter PygjH and an arabinose-regulated system, dynamically regulating the expression of the PLP synthetic genes and preventing excessive intracellular PLP accumulation. The optimal strain, L18, cultivated in the minimal medium AM1, demonstrated cadaverine production with a titer, yield, and productivity of 64.03 g/L, 0.23 g/g glucose, and 1.33 g/L/h, respectively. This represents the highest titer reported to date in engineered Escherichia coli by fed-batch fermentation in a minimal medium.

2.
ACS Synth Biol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758631

ABSTRACT

Microbial synthetic epigenetics offers significant opportunities for the design of synthetic biology tools by leveraging reversible gene control mechanisms without altering DNA sequences. However, limited understanding and a lack of technologies for thorough analysis of the mechanisms behind epigenetic modifications have hampered their utilization in biotechnological applications. In this review, we explore advancements in developing epigenetic-based synthetic gene regulatory tools at both transcriptional and post-transcriptional levels. Furthermore, we examine strategies developed to construct epigenetic-based circuits that provide controllable and stable gene regulation, aiming to boost the performance of microbial chassis cells. Finally, we discuss the current challenges and perspectives in the development of synthetic epigenetic tools.

3.
J Agric Food Chem ; 72(19): 11029-11040, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699920

ABSTRACT

l-Phenylalanine (l-Phe) is widely used in the food and pharmaceutical industries. However, the biosynthesis of l-Phe using Escherichia coli remains challenging due to its lower tolerance to high concentration of l-Phe. In this study, to efficiently synthesize l-Phe, the l-Phe biosynthetic pathway was reconstructed by expressing the heterologous genes aroK1, aroL1, and pheA1, along with the native genes aroA, aroC, and tyrB in the shikimate-producing strain E. coli SA09, resulting in the engineered strain E. coli PHE03. Subsequently, adaptive evolution was conducted on E. coli PHE03 to enhance its tolerance to high concentrations of l-Phe, resulting in the strain E. coli PHE04, which reduced the cell mortality to 36.2% after 48 h of fermentation. To elucidate the potential mechanisms, transcriptional profiling was conducted, revealing MarA, a DNA-binding transcriptional dual regulator, as playing a crucial role in enhancing cell membrane integrity and fluidity for improving cell tolerance to high concentrations of l-Phe. Finally, the titer, yield, and productivity of l-Phe with E. coli PHE05 overexpressing marA were increased to 80.48 g/L, 0.27 g/g glucose, and 1.68 g/L/h in a 5-L fed-batch fermentation, respectively.


Subject(s)
Escherichia coli , Fermentation , Metabolic Engineering , Phenylalanine , Escherichia coli/genetics , Escherichia coli/metabolism , Phenylalanine/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Biosynthetic Pathways
4.
Angew Chem Int Ed Engl ; : e202406060, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789390

ABSTRACT

The hydroxylation of remote C(sp3)-H bonds in aliphatic amino acids yields crucial precursors for the synthesis of high-value compounds. However, accurate regulation of the regioselectivity of remote C(sp3)-H bonds hydroxylation in aliphatic amino acids continues to be a common challenge in chemosynthesis and biosynthesis. In this study, the Fe(II)/α-ketoglutarate-dependent dioxygenase from Bacillus subtilis (BlAH) was mined and found to catalyze hydroxylation at the γ and δ sites of aliphatic amino acids. Through crystal structure analysis, molecular dynamic simulation and quantum chemical calculations revealed that regioselectivity was regulated by the spatial effect of BlAH. Based on this result, the spatial effect of BlAH was reconstructed to stabilize the transition state at the δ site of aliphatic amino acids, thereby successfully reversing the γ site regioselectivity to the δ site. For example, the regioselectivity of L-Homoleucine (5a) was reversed from the γ site (1:12) to the δ site (>99:1). The present study not only expands the toolbox of biocatalysts for the regioselective functionalization of remote C(sp3)-H bonds, but also provides a theoretical guidance for the precision-driven modification of similarly remote C(sp3)-H bonds in complex molecules.

5.
Nature ; 629(8013): 937-944, 2024 May.
Article in English | MEDLINE | ID: mdl-38720067

ABSTRACT

QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.


Subject(s)
Biosynthetic Pathways , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saponins/biosynthesis , Saponins/metabolism , Saponins/chemistry , Metabolic Engineering , Adjuvants, Immunologic/biosynthesis , Adjuvants, Immunologic/metabolism
6.
Chembiochem ; : e202400142, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742957

ABSTRACT

The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.

7.
Enzyme Microb Technol ; 178: 110448, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38657401

ABSTRACT

D-allulose is a naturally occurring rare sugar and beneficial to human health. However, the efficient biosynthesis of D-allulose remains a challenge. Here, we mined a new D-tagatose 3-epimerase from Kroppenstedtia eburnean (KeDt3e) with high catalytic efficiency. Initially, crucial factors contributing to the low conversion of KeDt3e were identified through crystal structure analysis, density functional theory calculations (DFT), and molecular dynamics (MD) simulations. Subsequently, based on the mechanism, combining restructuring the flexible region, proline substitution based onconsensus sequence analysis, introducing disulfide bonds, and grafting properties, and reshaping the active center, the optimal mutant M5 of KeDt3e was obtained with enhanced thermostability and activity. The optimal mutant M5 exhibited an enzyme activity of 130.8 U/mg, representing a 1.2-fold increase; Tm value increased from 52.7 °C to 71.2 °C; and half-life at 55 °C extended to 273.7 min, representing a 58.2-fold improvement, and the detailed mechanism of performance improvement was analyzed. Finally, by screening the ribosome-binding site (RBS) of the optimal mutant M5 recombinant bacterium (G01), the engineered strain G08 with higher expression levels was obtained. The engineered strain G08 catalyzed 500 g/L D-fructose to produce 172.4 g/L D-allulose, with a conversion of 34.4% in 0.5 h and productivity of 344.8 g/L/h on a 1 L scale. This study presents a promising approach for industrial-scale production of D-allulose.


Subject(s)
Carbohydrate Epimerases , Enzyme Stability , Hexoses , Hexoses/metabolism , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/chemistry , Molecular Dynamics Simulation , Fructose/metabolism , Kinetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Substrate Specificity , Protein Engineering , Racemases and Epimerases/metabolism , Racemases and Epimerases/genetics , Racemases and Epimerases/chemistry
8.
J Agric Food Chem ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602702

ABSTRACT

Pyridoxal 5'-phosphate (PLP) is highly valuable in food and medicine. However, achieving the efficient biosynthesis of PLP remains challenging. Here, a salvage pathway using acid phosphatase from Salmonella typhi (StAPase) and pyridoxine oxidase from Escherichia coli (EcPNPO) as pathway enzymes was established for the first time to synthesize PLP from pyridoxine (PN) and pyrophosphate (PPi). StAPase was identified as a rate-limiting enzyme. Two protein modification strategies were developed based on the PN phosphorylation mechanism: (1) improving the binding of PN into StAPase and (2) enhancing the hydrophobicity of StAPase's substrate binding pocket. The kcat/Km of optimal mutant M7 was 4.9 times higher than that of the wild type. The detailed mechanism of performance improvement was analyzed. Under the catalysis of M7 and EcPNPO, a PLP high-yielding strain of 14.5 ± 0.55 g/L was engineered with a productivity of 1.0 ± 0.02 g/(L h) (the highest to date). The study suggests a promising method for industrial-scale PLP production.

9.
Biotechnol Bioeng ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666765

ABSTRACT

P-coumaric acid (p-CA), a pant metabolite with antioxidant and anti-inflammatory activity, is extensively utilized in biomedicine, food, and cosmetics industry. In this study, a synthetic pathway (PAL) for p-CA was designed, integrating three enzymes (AtPAL2, AtC4H, AtATR2) into a higher l-phenylalanine-producing strain Escherichia coli PHE05. However, the lower soluble expression and activity of AtC4H in the PAL pathway was a bottleneck for increasing p-CA titers. To overcome this limitation, the soluble expression of AtC4H was enhanced through N-terminal modifications. And an optimal mutant, AtC4HL373T/G211H, which exhibited a 4.3-fold higher kcat/Km value compared to the wild type, was developed. In addition, metabolic engineering strategies were employed to increase the intracellular NADPH pool. Overexpression of ppnk in engineered E. coli PHCA20 led to a 13.9-folds, 1.3-folds, and 29.1% in NADPH content, the NADPH/NADP+ ratio and p-CA titer, respectively. These optimizations significantly enhance p-CA production, in a 5-L fermenter using fed-batch fermentation, the p-CA titer, yield and productivity of engineered strain E. coli PHCA20 were 3.09 g/L, 20.01 mg/g glucose, and 49.05 mg/L/h, respectively. The results presented here provide a novel way to efficiently produce the plant metabolites using an industrial strain.

10.
JACS Au ; 4(2): 557-569, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425913

ABSTRACT

l-Amino acid oxidase (LAAO) is an important biocatalyst used for synthesizing α-keto acids. LAAO from Rhodococcus opacus (RoLAAO) has a broad substrate spectrum; however, its low total turnover number limits its industrial use. To overcome this, we aimed to employ crystal structure-guided density functional theory calculations and molecular dynamic simulations to investigate the catalytic mechanism. Two key steps were identified: S → [TS1] in step 1 and Int1 → [TS2] in step 2. We reprogrammed the transition states [TS1] and [TS2] to reduce the identified energy barrier and obtain a RoLAAO variant capable of catalyzing 19 kinds of l-amino acids to the corresponding high-value α-keto acids with a high total turnover number, yield (≥95.1 g/L), conversion rate (≥95%), and space-time yields ≥142.7 g/L/d in 12-24 h, in a 5 L reactor. Our results indicated the promising potential of the developed RoLAAO variant for use in the industrial production of α-keto acids while providing a potential catalytic-mechanism-guided protein design strategy to achieve the desired physical and catalytic properties of enzymes.

11.
Metab Eng ; 82: 134-146, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38369051

ABSTRACT

Protocatechuic acid (3, 4-dihydroxybenzoic acid, PCA) is widely used in the pharmaceuticals, health food, and cosmetics industries owing to its diverse biological activities. However, the inhibition of 3-dehydroshikimate dehydratase (AroZ) by PCA and its toxicity to cells limit the efficient production of PCA in Escherichia coli. In this study, a high-level strain of 3-dehydroshikimate, E. coli DHS01, was developed by blocking the carbon flow from the shikimate-overproducing strain E. coli SA09. Additionally, the PCA biosynthetic pathway was established in DHS01 by introducing the high-activity ApAroZ. Subsequently, the protein structure and catalytic mechanism of 3-dehydroshikimate dehydratase from Acinetobacter pittii PHEA-2 (ApAroZ) were clarified. The variant ApAroZR363A, achieved by modulating the conformational dynamics of ApAroZ, effectively relieved product inhibition. Additionally, the tolerance of the strain E. coli PCA04 to PCA was enhanced by adaptive laboratory evolution, and a biosensor-assisted high-throughput screening method was designed and implemented to expedite the identification of high-performance PCA-producing strains. Finally, in a 5 L bioreactor, the final strain PCA05 achieved the highest PCA titer of 46.65 g/L, a yield of 0.23 g/g, and a productivity of 1.46 g/L/h for PCA synthesis from glucose using normal fed-batch fermentation. The strategies described herein serve as valuable guidelines for the production of other high-value and toxic products.


Subject(s)
Escherichia coli , Hydroxybenzoates , Metabolic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Bioreactors , Fermentation
12.
Nat Commun ; 15(1): 1032, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310110

ABSTRACT

Glutarate is a key monomer in polyester and polyamide production. The low efficiency of the current biosynthetic pathways hampers its production by microbial cell factories. Herein, through metabolic simulation, a lysine-overproducing E. coli strain Lys5 is engineered, achieving titer, yield, and productivity of 195.9 g/L, 0.67 g/g glucose, and 5.4 g/L·h, respectively. Subsequently, the pathway involving aromatic aldehyde synthase, monoamine oxidase, and aldehyde dehydrogenase (AMA pathway) is introduced into E. coli Lys5 to produce glutarate from glucose. To enhance the pathway's efficiency, rational mutagenesis on the aldehyde dehydrogenase is performed, resulting in the development of variant Mu5 with a 50-fold increase in catalytic efficiency. Finally, a glutarate tolerance gene cbpA is identified and genomically overexpressed to enhance glutarate productivity. With enzyme expression optimization, the glutarate titer, yield, and productivity of E. coli AMA06 reach 88.4 g/L, 0.42 g/g glucose, and 1.8 g/L·h, respectively. These findings hold implications for improving glutarate biosynthesis efficiency in microbial cell factories.


Subject(s)
Escherichia coli , Glutarates , Escherichia coli/genetics , Escherichia coli/metabolism , Glutarates/metabolism , Glucose/metabolism , Metabolic Engineering/methods , Aldehyde Dehydrogenase/metabolism
13.
Biotechnol Adv ; 70: 108282, 2024.
Article in English | MEDLINE | ID: mdl-37939975

ABSTRACT

With the development of metabolic engineering and synthetic biology, microbial cell factories (MCFs) have provided an efficient and sustainable method to synthesize a series of chemicals from renewable feedstocks. However, the efficiency of MCFs is usually limited by the inappropriate status of protein. Thus, engineering status of protein is essential to achieve efficient bioproduction with high titer, yield and productivity. In this review, we summarize the engineering strategies for metabolic protein status, including protein engineering for boosting microbial catalytic efficiency, protein modification for regulating microbial metabolic capacity, and protein assembly for enhancing microbial synthetic capacity. Finally, we highlight future challenges and prospects of improving microbial cell factories by engineering status of protein.


Subject(s)
Metabolic Engineering , Synthetic Biology
14.
Adv Sci (Weinh) ; 11(10): e2307351, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145357

ABSTRACT

Reprogramming metabolic flux is a promising approach for constructing efficient microbial cell factories (MCFs) to produce chemicals. However, how to boost the transmission efficiency of metabolic flux is still challenging in complex metabolic pathways. In this study, metabolic flux is systematically reprogrammed by regulating flux size, flux direction, and flux rate to build an efficient MCF for chondroitin production. The ammoniation pool for UDP-GalNAc synthesis and the carbonization pool for UDP-GlcA synthesis are first enlarged to increase flux size for providing enough precursors for chondroitin biosynthesis. Then, the ammoniation pool and the carbonization pool are rematched using molecular valves to shift flux direction from cell growth to chondroitin biosynthesis. Next, the adaptability of polymerization pool with the ammoniation and carbonization pools is fine-tuned by dynamic and static valve-based adapters to accelerate flux rate for polymerizing UDP-GalNAc and UDP-GlcA to produce chondroitin. Finally, the engineered strain E. coli F51 is able to produce 9.2 g L-1 chondroitin in a 5-L bioreactor. This strategy shown here provides a systematical approach for regulating metabolic flux in complex metabolic pathways for efficient biosynthesis of chemicals.


Subject(s)
Chondroitin , Escherichia coli , Chondroitin/chemistry , Chondroitin/metabolism , Escherichia coli/metabolism , Uridine Diphosphate/metabolism
15.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3236-3252, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37622358

ABSTRACT

Succinic acid is an important C4 platform chemical that is widely used in food, chemical, medicine sectors. The bottleneck of fermentative production of succinic acid by engineered Escherichia coli is the imbalance of intracellular cofactors, which often leads to accumulation of by-products, lower yield and low productivity. Stoichiometric analysis indicated that an efficient production of succinic acid by E. coli FMME-N-26 under micro-aeration conditions might be achieved when the TCA cycle provides enough ATP and NADH for the r-TCA pathway. In order to promote succinic acid production, a serial of metabolic engineering strategies include reducing ATP consumption, strengthening ATP synthesis, blocking NADH competitive pathway and constructing NADH complementary pathway were developed. As result, an engineered E. coli FW-17 capable of producing 139.52 g/L succinic acid and 1.40 g/L acetic acid in 5 L fermenter, which were 17.81% higher and 67.59% lower than that of the control strain, was developed. Further scale-up experiments were carried out in a 1 000 L fermenter, and the titer of succinic acid and acetic acid were 140.2 g/L and 1.38 g/L, respectively.


Subject(s)
Escherichia coli , NAD , Escherichia coli/genetics , Succinic Acid , Acetic Acid , Adenosine Triphosphate
16.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3253-3272, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37622359

ABSTRACT

As a branched chain amino acid, L-valine is widely used in the medicine and feed sectors. In this study, a microbial cell factory for efficient production of L-valine was constructed by combining various metabolic engineering strategies. First, precursor supply for L-valine biosynthesis was enhanced by strengthening the glycolysis pathway and weakening the metabolic pathway of by-products. Subsequently, the key enzyme in the L-valine synthesis pathway, acetylhydroxylate synthase, was engineered by site-directed mutation to relieve the feedback inhibition of the engineered strain. Moreover, promoter engineering was used to optimize the gene expression level of key enzymes in L-valine biosynthetic pathway. Furthermore, cofactor engineering was adopted to change the cofactor preference of acetohydroxyacid isomeroreductase and branched-chain amino acid aminotransferase from NADPH to NADH. The engineered strain C. glutamicum K020 showed a significant increase in L-valine titer, yield and productivity in 5 L fed-batch bioreactor, up to 110 g/L, 0.51 g/g and 2.29 g/(L‧h), respectively.


Subject(s)
Corynebacterium glutamicum , Valine , Corynebacterium glutamicum/genetics , Metabolic Engineering , Amino Acids, Branched-Chain , Bioreactors
17.
Trends Microbiol ; 31(9): 889-893, 2023 09.
Article in English | MEDLINE | ID: mdl-37400289

ABSTRACT

Microbial chassis engineering is the milestone of efficient biotechnological applications. However, microbial chassis cell engineering is adversely affected by (i) regulatory tool orthogonality, (ii) host metabolic fitness, and (iii) cell population heterogeneity. Herein, we explore how synthetic epigenetics can potentially address these limitations and offer insights into prospects in this field.


Subject(s)
Metabolic Engineering , Synthetic Biology , Biotechnology
18.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2359-2374, 2023 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-37401598

ABSTRACT

As an essential amino acid, l-tryptophan is widely used in food, feed and medicine sectors. Nowadays, microbial l-tryptophan production suffers from low productivity and yield. Here we construct a chassis E. coli TRP3 producing 11.80 g/L l-tryptophan, which was generated by knocking out the l-tryptophan operon repressor protein (trpR) and the l-tryptophan attenuator (trpL), and introducing the feedback-resistant mutant aroGfbr. On this basis, the l-tryptophan biosynthesis pathway was divided into three modules, including the central metabolic pathway module, the shikimic acid pathway to chorismate module and the chorismate to tryptophan module. Then we used promoter engineering approach to balance the three modules and obtained an engineered E. coli TRP9. After fed-batch cultures in a 5 L fermentor, tryptophan titer reached to 36.08 g/L, with a yield of 18.55%, which reached 81.7% of the maximum theoretical yield. The tryptophan producing strain with high yield laid a good foundation for large-scale production of tryptophan.


Subject(s)
Escherichia coli , Tryptophan , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering , Bioreactors , Metabolic Networks and Pathways
19.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2390-2409, 2023 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-37401600

ABSTRACT

The use of light energy to drive carbon dioxide (CO2) reduction for production of chemicals is of great significance for relieving environmental pressure and solving energy crisis. Photocapture, photoelectricity conversion and CO2 fixation are the key factors affecting the efficiency of photosynthesis, and thus also affect the efficiency of CO2 utilization. To solve the above problems, this review systematically summarizes the construction, optimization and application of light-driven hybrid system from the perspective of combining biochemistry and metabolic engineering. We introduce the latest research progress of light-driven CO2 reduction for biosynthesis of chemicals from three aspects: enzyme hybrid system, biological hybrid system and application of these hybrid system. In the aspect of enzyme hybrid system, many strategies were adopted such as improving enzyme catalytic activity and enhancing enzyme stability. In the aspect of biological hybrid system, many methods were used including enhancing biological light harvesting capacity, optimizing reducing power supply and improving energy regeneration. In terms of the applications, hybrid systems have been used in the production of one-carbon compounds, biofuels and biofoods. Finally, the future development direction of artificial photosynthetic system is prospected from the aspects of nanomaterials (including organic and inorganic materials) and biocatalysts (including enzymes and microorganisms).


Subject(s)
Carbon Dioxide , Photosynthesis , Carbon Dioxide/metabolism , Metabolic Engineering
20.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2375-2389, 2023 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-37401599

ABSTRACT

Adipic acid is a high-value-added dicarboxylic acid which is primarily used in the production of nylon-66 for manufacturing polyurethane foam and polyester resins. At present, the biosynthesis of adipic acid is hampered by its low production efficiency. By introducing the key enzymes of adipic acid reverse degradation pathway into a succinic acid overproducing strain Escherichia coli FMME N-2, an engineered E. coli JL00 capable of producing 0.34 g/L adipic acid was constructed. Subsequently, the expression level of the rate-limiting enzyme was optimized and the adipic acid titer in shake-flask fermentation increased to 0.87 g/L. Moreover, the supply of precursors was balanced by a combinatorial strategy consisting of deletion of sucD, over-expression of acs, and mutation of lpd, and the adipic acid titer of the resulting E. coli JL12 increased to 1.51 g/L. Finally, the fermentation process was optimized in a 5 L fermenter. After 72 h fed-batch fermentation, adipic acid titer reached 22.3 g/L with a yield of 0.25 g/g and a productivity of 0.31 g/(L·h). This work may serve as a technical reference for the biosynthesis of various dicarboxylic acids.


Subject(s)
Escherichia coli , Metabolic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , Bioreactors , Fermentation , Adipates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...