Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5401, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926352

ABSTRACT

Photocontrollable luminescent molecular switches capable of changing emitting color have been regarded as the ideal integration between intelligent and luminescent materials. A remaining challenge is to combine good luminescence properties with wide range of wavelength transformation, especially when confined in a single molecular system that forms well-defined nanostructures. Here, we report a π-expanded photochromic molecular photoswitch, which allows for the comprehensive achievements including wide emission wavelength variation (240 nm wide, 400-640 nm), high photoisomerization extent (95%), and pure emission color (<100 nm of full width at half maximum). We take the advantageous mechanism of modulating self-assembly and intramolecular charge transfer in the synthesis and construction, and further realize the full color emission by simple photocontrol. Based on this, both photoactivated anti-counterfeiting function and self-erasing photowriting films are achieved of fluorescence. This work will provide insight into the design of intelligent optical materials.

2.
Angew Chem Int Ed Engl ; : e202410130, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38932636

ABSTRACT

In contrast to the self-assembly of homosupramolecules, the self-assembly of heterosupramolecules is more challenging and significant in various fields. Herein, we design and investigate a cucurbit[8]uril-mediated heterodimerisation using an arene-fluoroarene strategy. Moreover, the resulting heteroternary complex is found to be able to undergo a photoinduced [2+2] heterocycloaddition, resulting in the formation of an unexpected [2]rotaxane structure. This work demonstrates a novel supramolecular heterodimerisation system, not only contributing to the development of photoisomerisation systems, but also enriching synthetic methodologies of mechanically interlocked molecules.

3.
Chemistry ; : e202400741, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745544

ABSTRACT

To address key concerns on solid-state pyrene-based luminescent materials, we propose a novel and efficient mechanical bond strategy. This strategy results in a transformation from ACQ to AIE effect and a remarkable enhancement of pyrene emission in the solid state. Moreover, an unusual purification of emission is also achieved. Through computational calculation and experimental characterisation, finally determined by X-ray diffraction analysis, we prove that the excellent emissions result from mechanical bond induced refinement of molecular arrangements, including reduced π-π stacking, well-ordered packing and enhanced structural stability. This work demonstrates the potential of mechanical bond in the field of organic luminescent molecules, providing a new avenue for developing high-performance organic luminescent materials.

4.
STAR Protoc ; 4(3): 102488, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37515765

ABSTRACT

Here, we present a protocol for the construction of a hierarchical host-guest supramolecular self-assembly system in water. We describe steps for determining the binding levels and capturing the morphologies of hierarchical self-assembly. We detail procedures for using UV-vis spectra, nuclear magnetic resonance spectra, scanning electron microscopy, and transmission electron microscopy for the assembly. This protocol is useful for analyzing the detailed chemical structure and morphological variation of hierarchical host-guest supramolecular self-assembly systems. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.


Subject(s)
Water , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission
5.
Nanoscale Adv ; 5(7): 1830-1852, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36998669

ABSTRACT

Artificial light-harvesting systems, an elegant way to capture, transfer and utilize solar energy, have attracted great attention in recent years. As the primary step of natural photosynthesis, the principle of light-harvesting systems has been intensively investigated, which is further employed for artificial construction of such systems. Supramolecular self-assembly is one of the feasible methods for building artificial light-harvesting systems, which also offers an advantageous pathway for improving light-harvesting efficiency. Many artificial light-harvesting systems based on supramolecular self-assembly have been successfully constructed at the nanoscale with extremely high donor/acceptor ratios, energy transfer efficiency and the antenna effect, which manifests that self-assembled supramolecular nanosystems are indeed a viable way for constructing efficient light-harvesting systems. Non-covalent interactions of supramolecular self-assembly provide diverse approaches to improve the efficiency of artificial light-harvesting systems. In this review, we summarize the recent advances in artificial light-harvesting systems based on self-assembled supramolecular nanosystems. The construction, modulation, and applications of self-assembled supramolecular light-harvesting systems are presented, and the corresponding mechanisms, research prospects and challenges are also briefly highlighted and discussed.

6.
Adv Mater ; 35(25): e2300232, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36921347

ABSTRACT

Overcoming the resistance to apoptosis and immunosuppression of tumor cells is a significant challenge in augmenting the effect of cancer immunotherapy. Pyroptosis, a lytic programmed cell-death pathway unlike apoptosis, is considered a type of immunogenic cell death (ICD) that can intensify the ICD process in tumor cells, releasing dramatically increased tumor-associated antigens and damage-associated molecular patterns to promote cancer immunotherapy. Herein, a tumor cell membrane-targeted aggregation-induced emission photosensitive dimer is found to be able to achieve highly efficient ICD under the synergistic effect of photodynamic and photothermal therapy. The photosensitive dimer can efficiently produce type-I reactive oxygen species (ROS) by photodynamic therapy in hypoxic tumor tissue, leading to pyroptosis by direct cell membrane damage, which is further reinforced by its photothermal effect. Furthermore, the enhanced ICD effect based on the dimer can completely eliminate the primary tumor on the seventh day of treatment and can also boost systemic antitumor immunity by generating immune memory, which is demonstrated by the superior antitumor therapeutic effects on both solid tumors and metastatic tumors when healing 4T1 tumor mouse models with poor immunogenicity.


Subject(s)
Neoplasms , Photochemotherapy , Animals , Mice , Pyroptosis , Immunotherapy , Neoplasms/therapy , Immunosuppression Therapy , Apoptosis , Polymers , Cell Line, Tumor
7.
ACS Appl Mater Interfaces ; 15(8): 11004-11015, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36802465

ABSTRACT

Developing an artificial dynamic nanoscale molecular machine that dissipatively self-assembles far from equilibrium is fundamentally important but is significantly challenging. Herein, we report dissipatively self-assembling light-activated convertible pseudorotaxanes (PRs) that show tunable fluorescence and enable deformable nano-assemblies. A pyridinium-conjugated sulfonato-merocyanine derivative (EPMEH) and cucurbit[8]uril (CB[8]) form the 2EPMEH ⊂ CB[8] [3]PR in a 2:1 stoichiometry, which phototransforms into a transient spiropyran containing 1:1 EPSP ⊂ CB[8] [2]PR when exposed to light. The transient [2]PR thermally relaxes (reversibly) to the [3]PR in the dark accompanied by periodic fluorescence changes that include near-infrared emission. Moreover, octahedral and spherical nanoparticles are formed through the dissipative self-assembly of the two PRs, and the Golgi apparatus is dynamically imaged using fluorescent dissipative nano-assemblies.

8.
Small ; 19(1): e2205440, 2023 01.
Article in English | MEDLINE | ID: mdl-36285777

ABSTRACT

Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia-responsive photosensitizer, TPA-Azo. Introducing the azo group into the photosensitizer TPA-BN with aggregation-induced emission quenches its fluorescence. When the nonfluorescent TPA-Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA-BN with an amino group that exhibits fluorescence-activatable image-guided photodynamic therapy with dual-organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence-activatable photosensitizers.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Hypoxia , Organelles
9.
Small ; 18(42): e2204360, 2022 10.
Article in English | MEDLINE | ID: mdl-36135778

ABSTRACT

Dynamic sequential control of photoluminescence by supramolecular approaches has become a great issue in supramolecular chemistry. However, developing a systematic strategy to construct polychromatic photoluminescent supramolecular self-assemblies for improving the efficiency and sensitivity of artificial light-harvesting systems still remains a challenge. Here, a series of amphiphilicity-controlled supramolecular self-assemblies with polychromatic fluorescence based on lower-rim hexyl-modified sulfonatocalix[4]arene (SC4A6) and N-alkyl-modified p-phenylene divinylpyridiniums (PVPn, n = 2-7) as efficient light-harvesting platforms is reported. PVPn shows wide ranges of polychromatic fluorescence by co-assembling with SC4A6, whose emission trends significantly depend on the modified alkyl-chains of PVPn. The formed PVPn-SC4A6 co-assemblies as light-harvesting platforms are extremely sensitive for transferring the energy to two near-infrared emissive acceptors, Nile blue (NiB) and Rhodamine 800. After optimizing the amphiphilicity of PVPn-SC4A6 systems, the PVPn-SC4A6-NiB light-harvesting systems achieve an ultrasensitive working concentration for NiB (2 nm) and an ultrahigh antenna effect up to 91.0. Furthermore, the two different kinds of light-harvesting nanoparticles exhibit good performance on near-infrared imaging in the Golgi apparatus and mitochondria, respectively.


Subject(s)
Nanoparticles , Nanoparticles/chemistry
10.
Nat Commun ; 13(1): 3216, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680948

ABSTRACT

Dissipative self-assembly, one of fundamentally important out-of-equilibrium self-assembly systems, can serve as a controllable platform to exhibit temporal processes for various non-stimulus responsive properties. However, construction of light-fueled dissipative self-assembly structures with transformable morphology to modulate non-photoresponsive properties remains a great challenge. Here, we report a light-activated photodeformable dissipative self-assembly system in aqueous solution as metastable fluorescent palette. Zwitterionic sulfonato-merocyanine is employed as a light-induced amphiphile to co-assemble with polyethyleneimine after light irradiation. The formed spherical nanoparticles spontaneously transform into cuboid ones in the dark with simultaneous variation of the particle sizes. Then the two kinds of nanoparticles can reversibly interconvert to each other by periodical light irradiation and thermal relaxation. Furthermore, after loading different fluorophores exhibiting red, green, blue emissions and their mixtures, all these fluorescent dissipative deformable nanoparticles display time-dependent fluorescence variation with wide range of colors. Owing to the excellent performance of photodeformable dissipative assembly platform, the light-controlled fluorescence has achieved a 358-fold enhancement. Therefore, exposing the nanoparticles loaded with fluorophores to light in a spatially controlled manner allows us to draw multicolored fluorescent images that spontaneously disappeared after a specific period of time.

11.
ACS Appl Mater Interfaces ; 14(19): 22443-22453, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35513893

ABSTRACT

Artificial supramolecular light-harvesting systems have expanded various properties on photoluminescence, enabling promising applications on cell imaging, especially for imaging in organelles. Supramolecular light-harvesting systems have been used for imaging in some organelles such as lysosome, Golgi apparatus, and mitochondrion, but developing a supramolecular light-harvesting platform for imaging two organelles synchronously still remains a great challenge. Here, we report a series of lower-rim dodecyl-modified sulfonato-calix[4]arene-mediated supramolecular light-harvesting platforms for efficient light-harvesting from three naphthalene diphenylvinylpyridiniums containing acceptors, Nile Red, and Nile Blue. All of the constructed supramolecular light-harvesting systems possess high light-harvesting efficiency. Furthermore, when the two acceptors are loaded simultaneously in a single light-harvesting donor system for imaging in human prostate cancer cells, organelle imaging in lysosome and Golgi apparatus can be realized at the same time with distinctive wavelength emission. Nile Red receives the light-harvesting energy from the donors, reaching orange emissions (625 nm) in lysosome while Nile Blue shows a near-infrared light-harvesting emission at 675 nm in Golgi apparatus in the same cells. Thus, the light harvesting system provides a pathway for synchronously efficient cell imaging in two distinct organelles with a single type of photoluminescent supramolecular nanoparticles.


Subject(s)
Calixarenes , Nanoparticles , Diagnostic Imaging , Golgi Apparatus , Humans , Lysosomes
12.
Angew Chem Int Ed Engl ; 61(16): e202200466, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35100478

ABSTRACT

The development of controllable artificial light-harvesting systems based on liquid crystal (LC) materials, i.e., anisotropic fluids, remains a challenge. Herein, an annulene-based discotic LC compound 6 with a saddle-shaped cyclooctatetrathiophene core has been synthesized to construct a tunable light-harvesting platform. The LC material shows a typical aggregation-induced emission, which can act as a suitable light-harvesting donor. By loading Nile red (NiR) as an acceptor, an artificial light-harvesting system is achieved. Relying on the thermal-responsive self-assembling ability of 6 with variable molecular order, the efficiency of such 6-NiR system can be controlled by temperature. This light-harvesting system works sensitively at a high donor/acceptor ratio as 1000 : 1, and exhibits a high antenna effect (39.1) at a 100 : 1 donor/acceptor ratio. This thermochromic artificial light-harvesting LC system could find potential applications in smart devices employing soft materials.

13.
Angew Chem Int Ed Engl ; 61(2): e202112526, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34693603

ABSTRACT

Ring-opening metathesis polymerization (ROMP) has been regarded as a powerful tool for sequence-controlled polymerization. However, the traditional entropy-driven ROMP of macrocyclic olefins suffers from the lack of ring strain and poor regioselectivity, whereas the relay-ring-closing metathesis polymerization inevitably brings some unnecessary auxiliary structure into each monomeric unit. We developed a macrobicyclic olefin system bearing a sacrificial silyloxide bridge on the α,ß'-positions of the double bond as a new class of sequence-defined monomer for regioselective ROMP. The monomeric sequence information is implanted in the macro-ring, while the small ring, a 3-substituted cyclooctene structure with substantial ring tension, can provide not only narrow polydispersity, but also high regio-/stereospecificity. Besides, the silyloxide bridge can be sacrificially cleaved by desilylation and deoxygenation reactions to provide clean-structured, non-auxiliaried polymers.

14.
Nat Commun ; 12(1): 4993, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404798

ABSTRACT

Dissipative self-assembly, which requires a continuous supply of fuel to maintain the assembled states far from equilibrium, is the foundation of biological systems. Among a variety of fuels, light, the original fuel of natural dissipative self-assembly, is fundamentally important but remains a challenge to introduce into artificial dissipative self-assemblies. Here, we report an artificial dissipative self-assembly system that is constructed from light-induced amphiphiles. Such dissipative supramolecular assembly is easily performed using protonated sulfonato-merocyanine and chitosan based molecular and macromolecular components in water. Light irradiation induces the assembly of supramolecular nanoparticles, which spontaneously disassemble in the dark due to thermal back relaxation of the molecular switch. Owing to the presence of light-induced amphiphiles and the thermal dissociation mechanism, the lifetimes of these transient supramolecular nanoparticles are highly sensitive to temperature and light power and range from several minutes to hours. By incorporating various fluorophores into transient supramolecular nanoparticles, the processes of aggregation-induced emission and aggregation-caused quenching, along with periodic variations in fluorescent color over time, have been demonstrated. Transient supramolecular assemblies, which act as fluorescence modulators, can also function in human hepatocellular cancer cells.


Subject(s)
Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Water/chemistry , Fluorescence , Hep G2 Cells , Humans , Kinetics , Macromolecular Substances , Temperature
15.
Nat Commun ; 12(1): 2334, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879795

ABSTRACT

Twisted toroidal ribbons such as the one-sided Möbius strip have inspired scientists, engineers and artists for many centuries. A physical Möbius strip exhibits interesting mechanical properties deriving from a tendency to redistribute the torsional strain away from the twist region. This leads to the interesting possibility of building topological actuators with continuous deformations. Here we report on a series of corresponding bi-layered stripe actuators using a photothermally responsive liquid crystal elastomer as the fundamental polymeric material. Employing a special procedure, even Möbius strips with an odd number of twists can be fabricated exhibiting a seamless homeotropic and homogeneous morphology. Imposing a suitable contraction gradient under near-infrared light irradiation, these ribbons can realize continuous anticlockwise/clockwise in-situ rotation. Our work could pave the way for developing actuators and shape morphing materials that need not rely on switching between distinct states.

16.
Angew Chem Int Ed Engl ; 60(20): 11247-11251, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33655581

ABSTRACT

Bioinspired smart materials with synergistic allochroic luminescence and complex deformation are expected to play an important role in many areas of science and technology. However, it is still challenging to fabricate such soft actuators with high programmability that can be manipulated in situ with high spatial resolution. Herein, we have incorporated terminally functionalized aggregation-induced emission active tetraphenylethene derivative and photochromic spiropyran moieties into the networks of liquid crystal elastomers through covalent bonding to obtain the synergistic photochromic luminescence and programmable soft actuators. Bio-mimic functions and light-induced auxetic metamaterial-like devices were shown to be feasible based on the combination of assembly and origami-programming strategy. These bioinspired devices with synergistic photochromic luminescence and complex photodeformation abilities provide an elegant strategy to design multi-functional liquid crystal actuators.

17.
Chem Commun (Camb) ; 57(7): 911-914, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33393549

ABSTRACT

In recent years, graphdiyne and its derivatives with fascinating electro-optic properties have attracted tremendous scientific attention. Here we design and synthesize a graphdiyne-derived discotic liquid crystal material by decorating six wedge-shaped 3,4,5-tris(dodecyloxy)benzoate groups on the fundamental structural unit of graphdiyne, the dehydrotribenzo[18]annulene core. This graphdiyne-derived liquid crystal material exhibits a cubic phase and a hexagonal columnar phase at varied temperatures. Most interestingly, this molecule displays a tunable phase-dependent photoluminescence behavior. Under the irradiation of 365 nm wavelength ultraviolet light, the luminescent material emits pale blue, green and azure light in the cubic, hexagonal columnar and isotropic phases respectively. This graphdiyne-derived discotic liquid crystal with excellent optical characteristics might have application potentials in organic optoelectronic functional materials and devices.

18.
Chem Commun (Camb) ; 56(55): 7597-7600, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32514511

ABSTRACT

A snake-mimic soft actuator composed of a bilayered liquid crystal elastomer ribbon and two serrated feet is reported in this work. Under repeated on/off near-infrared light irradiation, this actuator can move forward relying on a reversible shape morphing between S-curve structure and reverse S-curve structure, which is similar to the serpentine locomotion of snakes.

19.
Angew Chem Int Ed Engl ; 59(26): 10493-10497, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32196893

ABSTRACT

Light-harvesting systems are an important way for capturing, transferring and utilizing light energy. It remains a key challenge to develop highly efficient artificial light-harvesting systems. Herein, we report a supramolecular co-assembly based on lower-rim dodecyl-modified sulfonatocalix[4]arene (SC4AD) and naphthyl-1,8-diphenyl pyridinium derivative (NPS) as a light-harvesting platform. NPS as a donor shows significant aggregation induced emission enhancement (AIEE) after assembling with SC4AD. Upon introduction of Nile blue (NiB) as an acceptor into the NPS-SC4AD co-assembly, the light-harvesting system becomes near-infrared (NIR) emissive (675 nm). Importantly, the NIR emitting NPS-SC4AD-NiB system exhibits an ultrahigh antenna effect (33.1) at a high donor/acceptor ratio (250:1). By co-staining PC-3 cells with a Golgi staining reagent, NBD C6 -ceramide, NIR imaging in the Golgi apparatus has been demonstrated using these NIR emissive nanoparticles.


Subject(s)
Calixarenes/chemistry , Fluorescent Dyes/chemistry , Golgi Apparatus/metabolism , Pyridinium Compounds/chemistry , Calixarenes/radiation effects , Calixarenes/toxicity , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/radiation effects , Fluorescent Dyes/toxicity , Humans , Infrared Rays , Microscopy, Confocal , Microscopy, Fluorescence , Nanoparticles/chemistry , Nanoparticles/radiation effects , Nanoparticles/toxicity , Oxazines/chemistry , Oxazines/radiation effects , Oxazines/toxicity , PC-3 Cells , Pyridinium Compounds/radiation effects , Pyridinium Compounds/toxicity
20.
ACS Macro Lett ; 9(6): 860-865, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-35648519

ABSTRACT

In this letter, we present an electro-driven cylindrical actuator system composed of a bilayered liquid crystal elastomer/carbon black (LCE/CB) electro-driven soft actuator and a conductive track. The bilayered LCE/CB electro-driven actuator consists of an inner LCE circular band and several U-shaped CB conductive regions stuck on the outer surface of the LCE ring. Benefiting from the effective Joule heating of CB powder and the consequential inhomogeneous stress generated inside the bilayered LCE/CB film, the cylindrical actuator can roll forward with a rate of 1.6 mm/s along a stationary copper conductive track powered by a 50 V direct current supply. The dynamic connection between the rolling actuator and the conductive track effectively eliminates the limitation of electric wires in the complicated actuation set-ups of the LCE materials. This work might promote the development of electro-driven LCE actuators and have potential applications in the fields of soft robots and electric devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...