Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19996, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411330

ABSTRACT

Gene manipulation techniques are fundamental to molecular biology and are continuously being improved. However, gene transfection methods are not established for many unicellular eukaryotes (protists), thereby hindering molecular biological investigations. The oyster parasite Perkinisus marinus is one of the few protists with established gene transfection and drug selection. Nevertheless, the present protocols are tedious, requiring a specific electroporator and pulse conditions which limits the accessibility of this technique across different research groups. Here, we present alternative buffer and electroporation conditions that make the protocol less restrictive. We revealed the pulse condition that enables the introduction of plasmids into P. marinus cell using Ingenio electroporation buffer and NEPA21 electroporator. We found that number of cells and plasmid concentration were critical parameters for the electroporation system. We also constructed a simpler expression plasmid that is removed needless regions for gene expression in the parasite. Our findings resolved the equipment restriction in electroporation of P. marinus and would be a good reference for electroporation in other protists, in particular other Perkinsozoa parasites and core dinoflagellates.


Subject(s)
Apicomplexa , Dinoflagellida , Ostreidae , Parasites , Animals , Parasites/genetics , Apicomplexa/genetics , Electroporation , Dinoflagellida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...