Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Cell Death Discov ; 8(1): 349, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927233

ABSTRACT

Glioblastoma (GBM), the most malignant type of astrocytic tumor, is one of the deadliest cancers prevalent in adults. Along with tumor growth, patients with GBM generally suffer from extensive cerebral edema and apparent symptoms of intracranial hyper-pressure. Accumulating evidence has demonstrated that circRNA plays a critically important role in tumorigenesis and progression. However, the biological function and the underlying mechanism of circRNA in GBM remain elusive. In this study, by conducting gene expression detection based on 15 pairs of GBM clinical specimens and the normal adjunct tissues, we observed that circPOSTN showed abnormally higher expression in GBM. Both loss-of-function and gain-of-function biological experiments demonstrated that circPOSTN scheduled the proliferation, migration, and neovascularization abilities of GBM cells. Further, fluorescence in situ hybridization (FISH) assay, quantitative RT-PCR, and subcellular separation suggested that circPOSTN was predominately localized in the cytoplasm and may serve as a competing endogenous RNA (ceRNA). CircRNA-miRNA interaction prediction based on online analytical processing, AGO2-RIP assay, biotin labeled RNA pulldown assay, and dual-luciferase reporter assay revealed that circPOSTN sponged miR-219a-2-3p, limited its biological function, and ultimately upregulated their common downstream gene STC1. Finally, by carrying out in vitro and in vivo functional assays, we uncovered a new regulatory axis circPOSTN/miR-219a-2-3p/STC1 that promoted GBM neovascularization by increasing vascular endothelial growth factor A (VEGFA) secretion. Our study underscores the critical role of circPOSTN in GBM progression, providing a novel insight into GBM anti-tumor therapy.

2.
J Transl Med ; 20(1): 322, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864535

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) can disrupt the tight junctions between gastric epithelial cells and penetrate the intercellular spaces acting on epithelial cells, normal fibroblasts (NFs), and cancer-associated fibroblasts (CAFs), but their interaction in gastric cancer tumorigenesis and progression remains unclear. METHODS: Primary CAFs and NFs were isolated from paired gastric cancer tissues and adjacent normal tissues and identified by immunofluorescence staining and western blot analysis for FSP-1, α-SMA, FAP, and vimentin expression. RNA-sequencing was used to compare the transcriptomes between CAFs and NFs. The expressions of FAP, lumican, and α-SMA, human cytokine array, and Transwell assay were used to assess the transformation of NFs to CAFs. CCK-8 assay, colony formation, flow cytometry, Transwell assay, and nude mouse xenograft model were used to determine the effects of Serpin E1 on cell proliferation and metastasis in vitro and in vivo. Finally, Serpin E1 and/or FAP expression was measured in H. pylori-infected gerbil gastric mucosa and human gastric cancer tissues. RESULTS: Gastric CAFs are inflammatory CAFs with α-SMAlowFAPhighlumicanhigh. The interplay of H. pylori, fibroblasts, and cancer cells promotes the transition of NFs to CAFs by inducing cytokine release, especially Serpin E1. Long-term H. pylori infection and CAFs induce Serpin E1 expression in gerbil gastric tissues and human gastric cancer cells. Serpin E1 overexpression enhances the growth, migration, invasion of gastric cancer cells in vitro, and xenograft tumor growth in nude mice via inducing angiogenesis. Serpin E1 and FAP were highly expressed in cancer cells and CAFs of gastric cancer tissues, respectively, and a good correlation was observed between their expression. Higher Serpin E1 expression is negatively associated with the overall survival of patients with gastric cancer. CONCLUSIONS: The interplay of H. pylori, fibroblasts, and cancer cells induced Serpin E1 expression to promote the activation of NFs to CAFs and gastric carcinogenesis. Targeting Serpin E1 will provide a promising therapeutic strategy for gastric cancer by disrupting the interaction between H. pylori, CAFs, and gastric cancer cells.


Subject(s)
Helicobacter pylori , Stomach Neoplasms , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic , Cytokines/metabolism , Fibroblasts/metabolism , Humans , Lumican/metabolism , Mice , Mice, Nude , Plasminogen Activator Inhibitor 1/metabolism , Stomach Neoplasms/pathology
3.
J Physiol Biochem ; 77(1): 93-104, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33625675

ABSTRACT

Gastric cancer (GC) is one of the most common cancers, with most patients often succumbing to death as a result of tumor metastasis. Recent work has demonstrated that gastrin is closely associated with GC metastasis. However, the specific molecular mechanisms underlying this relationship remain to be unveiled. In this study, we assessed the impact of gastrin and the Wnt/ß-catenin inhibitor XAV939 on the epithelial-mesenchymal transition (EMT) of the SGC-7901 and MKN45 GC cell lines, and we determined that gastrin-17 significantly decreased E-cadherin expression and upregulated the expression of Snail1 and N-cadherin in GC cells. In addition, gastrin 17 also significantly increased the expression of Wnt3α in a dose-dependent manner. Consistent with these results, gastrin-17 promoted GC cell invasion, proliferation, and migration in a dose-dependent fashion, and these effects were inhibited by XAV939. Together, these results indicated that gastrin-17 induced GC cell EMT, migration, and invasion via the Wnt/ß-catenin signaling pathway, which suggests that this gastrin/Wnt/ß-catenin signaling axis may represent a therapeutic target for the prevention of GC metastasis.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Gastrins/pharmacology , Snail Family Transcription Factors/metabolism , Stomach Neoplasms/metabolism , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-793175

ABSTRACT

@# Objective: :To study the effect of silencing DKK1 (Dickkopf1) gene on the proliferation, cell cycle and apoptosis of gastric cancer AGS cells and the action mechanism. Methods: :The DKK1-shRNA vector was constructed and transfected into AGS cells. The stably transfected cell lines were screened. The total protein and RNAof the transfected cells were extracted and the mRNAand protein expressions of DKK1 were detected by qPCR and WB, respectively. The experiment was divided into blank control group (Control), negative control group (shNC) and DKK1 silence group (DKK1-shRNA). CCK8 assay was used to detect the proliferation ofAGS cells of each group cultured for 0, 24, 48, 72, 96, 120 and 144 h, and flow cytometry was used to analyze the cell cycle and apoptosis in each group. The relationship between DKK1 and clinicopathological features of gastric cancer was analyzed after searching HPA database. Results:The gastric cancer AGS cells with stable DKK1 gene knockdown was successfully established, and it was confirmed that the mRNA and proteinexpressions of DKK1 in DKK1-shRNA group decreased by 72% and 47%, respectively, compared to shNC group (all P<0.05). The cell proliferation curve showed that, the cell proliferation in DKKl-shRNAgroup significantly decreased after 72 hour of culture compared with that in control and shNC groups (P<0.05). The cell number of S phase decreased from 32.06% to 25.87%, while the number of G2/M phase increased from 8.49% to 21.26% compared with shNC group (all P<0.05). The number of apoptotic cells also statistically increased from 10.34% to 20.65% (all P<0.05). The data of HPAdatabase showed that DKK1 mRNAlevel in gastric cancer tissues was significantly higher than that in normal tissues, and the high expression of DKK1 mRNAwas negatively correlat ed with the survival rate of gastric cancer patients. Conclusion: : Silencing DKK1 gene can inhibit the proliferation of gastric cancer cells, arrest cells in G2/M phase and promote cell apoptosis. DKK1 plays a pro-carcinogenic effect in gastric cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...