Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
Article in English | MEDLINE | ID: mdl-38828892

ABSTRACT

Objective: Evaluating changes over time in the odds of obesity according to sex. Methods: PubMed, Embase, Cochrane Library, and China National Knowledge Database were searched for relevant studies. Full-text studies evaluating the influence of sex on obesity were analyzed. We used R 3.4.3 to assess the impact of results in the selected studies, calculated pooled prevalence and odds ratio (OR) with their respective 95% confidence intervals (CIs). P<0.10 and I2>50% indicated high heterogeneity, and the random-effects model was used, otherwise, the fixed-effects model was used. Results: The included studies reported the prevalence of obesity in children covering 1987-2017 intervals. The pooled prevalence of obesity in boy and girl groups were 0.13 (95% CI: 0.08, 0.20) and 0.10 (95% CI: 0.07, 0.13). In the analysis of the boy group, the pooled OR in earlier time (1987-2013) vs. recent time (2011-2017) was 0.98 (95% CI: 0.76, 1.26). The estimated OR for girls in earlier vs. recent time was 1.01 (95% CI: 0.80, 1.28). In the analysis of studies with follow-up period ≥ 10 years, the pooled OR for obesity in earlier vs. recent time period was 0.99 (95% CI: 0.76, 1.30). For those with follow-up period < 10 years, the pooled OR in earlier vs. recent time period was 0.94 (95% CI: 0.57, 1.54). Conclusions: Comprehensive measurements are required to control obesity among children albeit with nonsignificant gender difference and time trend for obesity rates in children.

2.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842635

ABSTRACT

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Histones , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Humans , Methylation , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Homologous Recombination , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Repair , Chromatin/metabolism , Chromatin/genetics
3.
Langmuir ; 40(19): 10362-10373, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691669

ABSTRACT

Poly(l-lactic acid) (PLLA) featuring desirable biodegradability and biocompatibility has been recognized as one of the promising eco-friendly biomaterials. However, low crystallization and poor mechanical and chemical performances dramatically hamper its practical application. In this work, we report that functionalized cellulose/PLLA composite superhydrophobic stereocomplex films with controllable water adhesion and protein adsorption can be fabricated by a facile approach for the first time. First, cellulose is surface-modified by means of two silanization modification methods. Then, superhydrophobic cellulose/PLLA composite films are prepared through a solvent-evaporation-induced phase separation method. The two cellulose/PLLA composite films exhibit extreme water repellency but tunable water adhesion from sticky to slippery. The protein adsorption capacity of the cellulose/PLLA composite films can also be regulated. In addition, the stereocomplexation of the composite film provides excellent mechanical properties with an elongation at break of 22.36%, which is 237.8% higher than that of a pure PLLA film, which is more suitable for biomaterials. Furthermore, good biodegradability of the PLLA composite films in nature enables the bio-based composites as alternative materials to replace conventional petroleum-based polymers. The superhydrophobic films have also been demonstrated for many applications, including slippery surfaces, liquid transportation without loss, and antifouling.

4.
J Hazard Mater ; 472: 134465, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704904

ABSTRACT

Oily wastewater and marine oil spills are a massive environmental and human threat. Conventional oil spill treatment methods include adsorption by absorbent materials, dispersants or adsorbents, and in situ burning. Superhydrophobic materials, as a material that can achieve oil-water separation, have great potential for application in oil spill treatment. Research on superhydrophobic oil spill treatment mainly focuses on materials such as sponges and fabrics. Although these materials can effectively perform oil-water separation or oil spill adsorption, they also have the disadvantages of complicated preparation methods and high costs. Here, we present a miniature device for oil-water separation and oil spill collection and recovery. The superhydrophobic copper mesh box can be used on its own as an oil-water separation device or in combination with a commercial polyurethane sponge as a miniature oil-absorbing device. The robust copper mesh is prepared in two steps: anodizing and impregnation. The superhydrophobic copper mesh had a high oil separation flux (32,330 L m-2 h-1) and efficiency (97%), which remained high (28,560 L m-2 h-1) and efficient (95%) after 20 cycles of separation. The combined micro oil adsorption device can adsorb different oils and fats on the water surface, and it has good reusability with oil adsorption capacity and efficiency up to 15.28 g/g and 98% and still has good oil adsorption capacity (11.54 g/g) and efficiency (94.6%) after 20 cycles of adsorption. Therefore, the prepared micro oil-absorbing device has promising application prospects in oil-water separation, oil spill cleanup, etc. ENVIRONMENTAL IMPLICATION: This study demonstrates a facile electrochemical approach to prepare a miniature device for high-efficiency oil-water separation and oil spill collection and recovery. The modified copper mesh's separation flux could reach 32,330 L m-2 h-1, showing great promise in oil-water separation and oil spill cleanup.

5.
Eur J Clin Pharmacol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802638

ABSTRACT

PURPOSE: Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of mortality worldwide. Statins, which are effective in preventing ASCVD, are underused, particularly for primary prevention. This study examined trends in statin use for primary ASCVD prevention from 1999 to 2020, focusing on demographic variations. METHODS: Utilizing data from the National Health and Nutrition Examination Survey, the present study includes individuals aged 18 years and older who had a greater than 10% risk of ASCVD over 10 years, and excluded patients with existing ASCVD. Subgroup analyses by demographic categories were performed. We calculated the changes in statin usage and used linear and quadratic tests to assess the linear and nonlinear trends in those changes. RESULTS: A total of 10,037 participants were included. Statin usage increased from 16.16% in 1999 to 36.24% in 2010, and 41.74% in 2020 (quadratic P-value < 0.001). In the 18-44 years age group, statin usage increased from 2.52% in 1999 to 8.14% in 2020 (linear P-value = 0.322), showing no significant linear trend. In the "never-married" group, statin usage increased from 19.16% in 1999 to 30.05% in 2020 (linear P-value = 0.256). CONCLUSION: Statin usage has shown a positive trend among populations requiring primary prevention for ASCVD. Currently, health policies are proving effective. However, the overall statin usage rate remains less than 50%. Additionally, young and never-married individuals should also receive special attention regarding statin usage as primary treatment for ASCVD.

6.
Nat Commun ; 15(1): 4332, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773131

ABSTRACT

Accurate state-of-health (SOH) estimation is critical for reliable and safe operation of lithium-ion batteries. However, reliable and stable battery SOH estimation remains challenging due to diverse battery types and operating conditions. In this paper, we propose a physics-informed neural network (PINN) for accurate and stable estimation of battery SOH. Specifically, we model the attributes that affect the battery degradation from the perspective of empirical degradation and state space equations, and utilize neural networks to capture battery degradation dynamics. A general feature extraction method is designed to extract statistical features from a short period of data before the battery is fully charged, enabling our method applicable to different battery types and charge/discharge protocols. Additionally, we generate a comprehensive dataset consisting of 55 lithium-nickel-cobalt-manganese-oxide (NCM) batteries. Combined with three other datasets from different manufacturers, we use a total of 387 batteries with 310,705 samples to validate our method. The mean absolute percentage error (MAPE) is 0.87%. Our proposed PINN has demonstrated remarkable performance in regular experiments, small sample experiments, and transfer experiments when compared to alternative neural networks. This study highlights the promise of physics-informed machine learning for battery degradation modeling and SOH estimation.

7.
Nat Commun ; 15(1): 3438, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653960

ABSTRACT

PbZrO3 has been broadly considered as a prototypical antiferroelectric material for high-power energy storage. A recent theoretical study suggests that the ground state of PbZrO3 is threefold-modulated ferrielectric, which challenges the generally accepted antiferroelectric configuration. However, such a novel ferrielectric phase was predicted only to be accessible at low temperatures. Here, we successfully achieve the room-temperature construction of the strongly competing ferrielectric and antiferroelectric state by strain-mediated phase separation in PbZrO3/SrTiO3 thin film. We demonstrate that the phase separation occurs spontaneously in quasi-periodic stripe-like patterns under a compressive misfit strain and can be tailored by varying the film thickness. The ferrielectric phase strikingly exhibitsa threefold modulation period with a nearly up-up-down configuration, which could be stabilized and manipulated by the formation and evolution of interfacial defects under applied strain. The present results construct a fertile ground for further exploring the physical properties and applications based on the novel ferrielectric phase.

8.
BMC Pediatr ; 24(1): 238, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570780

ABSTRACT

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a major complication affecting the survival rate and long-term outcomes of preterm infants. A large, prospective, multicenter cohort study was conducted to evaluate early nutritional support during the first week of life for preterm infants with a gestational age < 32 weeks and to verify nutritional risk factors related to BPD development. METHODS: A prospective multicenter cohort study of very preterm infants was conducted in 40 tertiary neonatal intensive care units across mainland China between January 1, 2020, and December 31, 2021. Preterm infants who were born at a gestational age < 32 weeks, < 72 h after birth and had a respiratory score > 4 were enrolled. Antenatal and postnatal information focusing on nutritional parameters was collected through medical systems. Statistical analyses were also performed to identify BPD risk factors. RESULTS: The primary outcomes were BPD and severity at 36 weeks postmenstrual age. A total of 1410 preterm infants were enrolled in this study. After applying the exclusion criteria, the remaining 1286 infants were included in this analysis; 614 (47.7%) infants were in the BPD group, and 672 (52.3%) were in the non-BPD group. In multivariate logistic regression model, the following six factors were identified of BPD: birth weight (OR 0.99, 95% CI 0.99-0.99; p = 0.039), day of full enteral nutrition (OR 1.03, 95% CI 1.02-1.04; p < 0.001), parenteral protein > 3.5 g/kg/d during the first week (OR 1.65, 95% CI 1.25-2.17; p < 0.001), feeding type (formula: OR 3.48, 95% CI 2.21-5.49; p < 0.001, mixed feed: OR 1.92, 95% CI 1.36-2.70; p < 0.001; breast milk as reference), hsPDA (OR 1.98, 95% CI 1.44-2.73; p < 0.001), and EUGR ats 36 weeks (OR 1.40, 95% CI 1.02-1.91; p = 0.035). CONCLUSIONS: A longer duration to achieve full enteral nutrition in very preterm infants was associated with increased BPD development. Breastfeeding was demonstrated to have a protective effect against BPD. Early and rapidly progressive enteral nutrition and breastfeeding should be promoted in very preterm infants. TRIAL REGISTRATION: The trial was registered in the Chinese Clinical Trial Registry (No. ChiCTR2000030125 on 24/02/2020) and in www.ncrcch.org (No. ISRCTN84167642 on 25/02/2020).


Subject(s)
Bronchopulmonary Dysplasia , Infant, Premature, Diseases , Respiratory Distress Syndrome , Humans , Infant, Newborn , Bronchopulmonary Dysplasia/therapy , Cohort Studies , Enteral Nutrition , Fetal Growth Retardation , Gestational Age , Infant, Premature , Prospective Studies
9.
J Agric Food Chem ; 72(13): 6850-6870, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38513114

ABSTRACT

Siraitia grosvenorii (SG), also known as Luo Han Guo or Monk fruit, boasts a significant history in food and medicine. This review delves into SG's historical role and varied applications in traditional Chinese culture, examining its phytochemical composition and the health benefits of its bioactive compounds. It further explores SG's biological activities, including antioxidant, anti-inflammatory, and antidiabetic properties and elucidates the mechanisms behind these effects. The review also highlights recent synthetic biology advances in enhancing the production of SG's bioactive compounds, presenting new opportunities for broadening their availability. Ultimately, this review emphasizes SG's value in food and medicine, showcasing its historical and cultural importance, phytochemistry, biological functions, action mechanisms, and the role of synthetic biology in its sustainable use.


Subject(s)
Cucurbitaceae , Synthetic Biology , Fruit/chemistry , Cucurbitaceae/chemistry
10.
J Fish Biol ; 104(5): 1350-1365, 2024 May.
Article in English | MEDLINE | ID: mdl-38332499

ABSTRACT

Dam construction alters the hydrodynamic conditions, consequently impacting the swimming behavior of fish. To explore the effect of flow hydrodynamics on fish swimming behavior, five endemic fish species in the upper Yangtze River basin were selected. Through high-speed video visualization and computer analysis, these species' swimming patterns under different flow velocities (0.1-1.2 m/s) were investigated. The kinematic and morphological characteristics of the fish were presented. The principal component analysis was used to analyse the main factors influencing the swimming ability of fish and to determine the correlation coefficients among fish behavior indicators. Fish exhibited three different swimming patterns under different flow velocities. Low velocity (0.1-0.3 m/s) corresponds to free motion, middle velocity (0.4-0.7 m/s) corresponds to cruising motion, and high velocity corresponds to stress motion (0.8-1.2 m/s). The fish kinematic index curves were obtained, and four of five fish species showed two extreme points, which means the optimal and adverse swimming strategies can be determined. With the increase in flow velocity, the tail-beat frequency showed an increasing trend, whereas the tail-beat angle and amplitude showed a decreasing trend. Morphological and kinematic parameters were the two main indexes that affect the swimming ability of fish, which accounts for 41.9% and 26.9%, respectively.


Subject(s)
Hydrodynamics , Rivers , Swimming , Animals , China , Biomechanical Phenomena , Fishes/physiology , Fishes/anatomy & histology , Principal Component Analysis , Video Recording
12.
Water Res ; 252: 121237, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309062

ABSTRACT

China, the largest developing country, has experienced rapid urbanization since its reform and opening-up. However, the increasing pollution load from urban areas has deteriorated urban river water quality, contradicting the concept of sustainable and green development promoted by the Chinese government. This situation elucidates governmental shortcomings in systematic environmental protection. Our study revealed that the current wastewater treatment plant (WWTP) discharge standards in urban areas are insufficient for attaining the desired urban river water quality and thus intensify the conflict between urbanization and water environmental protection. As urbanization continues, the urban population will grow, further exacerbating pollution and conflict. Our focus was the Xiangjiang River basin in Zunyi, a typical urbanized city in China. Using a validated one-dimensional mathematical model, we compared the water quality in the Xiangjiang River between current and upgraded WWTP discharge standards. The results showed that the water quality in the Xiangjiang River falls short of the standards, with more than 60 % of the river exceeding limits. However, upgrading WWTP discharge standards significantly reduces the proportion of river sections exceeding limits, with only 0.4 % exceeding standards during specific periods. This enhancement greatly improved the Xiangjiang River's water quality, aided in restoring the entire water environment in the basin, and supported water environmental protection goals. Our research findings offer crucial support for local governments in shaping comprehensive water environmental protection policies and insights for addressing similar environmental challenges caused by rapid urbanization in other developing regions.


Subject(s)
Environmental Monitoring , Urbanization , Environmental Monitoring/methods , Rivers , Conservation of Natural Resources , Water Quality , China
13.
Chemistry ; 30(18): e202303834, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38267399

ABSTRACT

Blue afterglow constitutes of one of the primary afterglow colors and can convert into other afterglow colors through energy transfer. The reported studies show the fabrication of blue afterglow emitters, but most of them are formed by room-temperature phosphorescence mechanism and require UVB lights as excitation source (these high-energy lights may damage organic systems). Here we report visible-light-excitable blue thermally activated delayed fluorescence type (TADF-type) afterglow materials via delicate control of excited states in difluoroboron ß-diketonate (BF2bdk) systems. Tiny change of the substituents in BF2bdk system has been found to pose significant influence on excited state energy levels and consequently narrow the singlet-triplet splitting energy of the system. As a result, both forward and reverse intersystem crossing have been accelerated, leading to the emergence of BF2bdk's TADF-type organic afterglow in rigid crystalline matrices. The resultant TADF-type afterglow materials exhibit emission lifetimes of several hundred milliseconds, photoluminescence quantum yield (PLQY) of 24.7 % and display temperature responsive property.

14.
Foods ; 13(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38254504

ABSTRACT

The microbial composition and volatile components of fermented grains (FG) and pit mud (PM) are crucial for the quality and flavor of compound-flavor baijiu (CFB). The physicochemical indices, culturable microorganisms, microbial communities, and volatile components of FG and PM were analyzed and correlated in our research. Considering FG and PM, amplicon sequencing was used to analyze the microbial community and the volatile components were detected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME). For FG, redundancy analysis and correlation perfume Circos were used to clarify the correlations between the dominant microbial community and volatile components. The results showed that Aspergillus, Pichia, and Rhizopus were the main fungal microflora in FG and PM, whereas Lactobacillus and Bacillus were the dominant bacteria in FG, and Methanosarcina and Clostridium sensu stricto 12 were the dominant bacteria in the PM. The microbial community and volatile compounds in the CB sampled from the bottom layers of the FG were greatly affected by those in the PM. There were 32 common volatile components in CB and PM. For FG, most of the volatile components were highly correlated with Lactobacillus, Bacillus, Aspergillus, Pichia, and Monascus, which includes alcohols, acids and esters. This study reveals correlations between microbial composition, volatile components, and the interplay of FG and PM, which are conducive to optimizing the fermentation process and improving the quality of CFB base.

15.
Sensors (Basel) ; 24(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203139

ABSTRACT

A novel label-free optical fiber biosensor, based on a microcavity fiber Mach-Zehnder interferometer, was developed and practically demonstrated for DNA detection. The biosensor was fabricated using offset splicing standard communication single-mode fibers (SMFs). The light path of the sensor was influenced by the liquid sample in the offset open cavity. In the experiment, a high sensitivity of -17,905 nm/RIU was achieved in the refractive index (RI) measurement. On this basis, the probe DNA (pDNA) was immobilized onto the sensor's surface using APTES, enabling real-time monitoring of captured complementary DNA (cDNA) samples. The experimental results demonstrate that the biosensor exhibited a high sensitivity of 0.32 nm/fM and a limit of detection of 48.9 aM. Meanwhile, the sensor has highly repeatable and specific performance. This work reports an easy-to-manufacture, ultrasensitive, and label-free DNA biosensor, which has significant potential applications in medical diagnostics, bioengineering, gene identification, environmental science, and other biological fields.


Subject(s)
Biomedical Engineering , Commerce , DNA, Complementary , Optical Fibers
16.
ACS Appl Mater Interfaces ; 16(5): 5999-6007, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38278553

ABSTRACT

With the synergies of multiple elements, bimetallic sulfides exhibit excellent performance as splendid electrode materials and effective catalysts. However, large-scale synthesis of high-performance single-phase multicomponent sulfides has always been a challenge. Based on thermodynamic calculations, the intermediate phases NiS2 and Co3S4 are devoted to the synthesis of single-phase Ni0.5Co0.5S2. Because the reaction from NiS2 and Co3S4 to Ni0.5Co0.5S2 goes through a lower energy, it thermodynamically contributes to achieving a single-phase structure. Thus, single-phase Ni0.5Co0.5S2 can be simply and quickly prepared by two-step sintering and successfully scalable for mass production. This technique can extend to the whole ingredients Ni1-xCoxS2. Ni0.5Co0.5S2 demonstrates excellent thermal stability and good conductivity. It delivers a specific capacity of 671 mAh·g-1 and a specific energy of 1173 Wh·kg-1 when applied to a thermal battery cathode, which are increased by 18.6% and 25.0%, respectively, compared to pristine NiS2 (566 mAh·g-1) and CoS2 (537 mAh·g-1). This work proposes an innovative sintering method, which is applicable for cost-efficient and large-scale synthesis of single-phase multicomponent sulfides.

17.
Intern Med J ; 54(3): 473-482, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37552622

ABSTRACT

BACKGROUND AND AIMS: The clinical effects of multivessel interventions in patients with unstable angina/non-ST-segment elevation myocardial infarction (UA/NSTEMI), multivessel disease (MVD) and chronic kidney disease (CKD) remain uncertain. This study aimed to investigate the safety and effectiveness of intervention in non-culprit lession(s) among this cohort. METHODS: We consecutively included patients diagnosed with UA/NSTEMI, MVD and CKD between January 2008 and December 2018 at our centre. After successful percutaneous coronary intervention (PCI), we compared 48-month overall mortality between those undergoing multivessel PCI (MV-PCI) through a single-procedure or staged-procedure approach and culprit vessel-only PCI (CV-PCI) after 1:1 propensity score matching. We conducted stratified analyses and tests for interaction to investigate the modifying effects of critical covariates. Additionally, we recorded the incidence of contrast-induced nephropathy (CIN) to assess the perioperative safety of the two treatment strategies. RESULTS: Of the 749 eligible patients, 271 pairs were successfully matched. Those undergoing MV-PCI had reduced all-cause mortality (hazard ratio (HR): 0.67, 95% confidence interval (CI): 0.48-0.67). Subgroup analysis showed that those with advanced CKD (estimated glomerular filtration rate (eGFR) ≤ 30 mL/min/1.73 m2 ) could not benefit from MV-PCI (P = 0.250), and the survival advantage also tended to diminish in diabetes (P interaction < 0.01; HR = 0.95, 95% CI = 0.65-1.45). Although the staged-procedure approach (N = 157) failed to bring additional survival benefits compared to single-procedure MV-PCI (N = 290) (P = 0.460), it showed a tendency to decrease the death risk. CIN risks in MV-PCI and CV-PCI groups were not significantly different (risk ratio = 1.60, 95% CI = 0.94-2.73). CONCLUSION: Among patients with UA/NSTEMI and non-diabetic CKD and an eGFR > 30 mL/min/1.73 m2 , MV-PCI was associated with a reduced risk of long-term death but did not increase the incidence of CIN during the management of MVD compared to CV-PCI. And staged procedures might be a preferable option over single-procedure MV-PCI.


Subject(s)
Coronary Artery Disease , Non-ST Elevated Myocardial Infarction , Percutaneous Coronary Intervention , Renal Insufficiency, Chronic , ST Elevation Myocardial Infarction , Humans , Percutaneous Coronary Intervention/methods , Angina, Unstable , Renal Insufficiency, Chronic/complications , Kidney , Treatment Outcome
18.
IEEE Trans Cybern ; 54(1): 506-518, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37030844

ABSTRACT

Intelligent fault diagnosis has been increasingly improved with the evolution of deep learning (DL) approaches. Recently, the emerging graph neural networks (GNNs) have also been introduced in the field of fault diagnosis with the goal to make better use of the inductive bias of the interdependencies between the different sensor measurements. However, there are some limitations with these GNN-based fault diagnosis methods. First, they lack the ability to realize multiscale feature extraction due to the fixed receptive field of GNNs. Second, they eventually encounter the over-smoothing problem with increase of model depth. Finally, the extracted features of these GNNs are hard to understand due to the black-box nature of GNNs. To address these issues, a filter-informed spectral graph wavelet network (SGWN) is proposed in this article. In SGWN, the spectral graph wavelet convolutional (SGWConv) layer is established upon the spectral graph wavelet transform, which can decompose a graph signal into scaling function coefficients and spectral graph wavelet coefficients. With the help of SGWConv, SGWN is able to prevent the over-smoothing problem caused by long-range low-pass filtering, by simultaneously extracting low-pass and band-pass features. Furthermore, to speed up the computation of SGWN, the scaling kernel function and graph wavelet kernel function in SGWConv are approximated by the Chebyshev polynomials. The effectiveness of the proposed SGWN is evaluated on the collected solenoid valve dataset and aero-engine intershaft bearing dataset. The experimental results show that SGWN can outperform the comparative methods in both diagnostic accuracy and the ability to prevent over-smoothing. Moreover, its extracted features are also interpretable with domain knowledge.

19.
Respir Med ; 222: 107501, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104787

ABSTRACT

OBJECTIVES: Studies have shown an association between eosinophilia and clinical outcomes in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, contradictory findings exist. Our study aims to systematically evaluate the association between elevated peripheral blood eosinophils and clinical outcome of patients with AECOPD. METHODS: An electronic search was conducted for relevant studies published from database inception to February 28, 2023, on PubMed, EMBASE, Cochrane Library, and Web of Science. The analysis covered studies on the correlation between EOS AECOPD and mortality, hospital stay duration, readmission and hospitalization rates, and invasive mechanical ventilation. Where applicable, relative risk (RR) and weighted mean difference (WMD) were extracted, pooled, and assessed using meta-analysis. Sensitivity analysis was performed to explore the source of heterogeneity. RESULTS: Fifteen high-quality studies including 14 cohort studies and one case-control study were included in the meta-analysis. Compared with non-eosinophilic AECOPD patients, those with eosinophilic AECOPD had a lower risk of mortality (RR = 0.65, 95 % confidence interval [CI] 0.54, 0.77, P < 0.001), shorter length of hospital stay (WMD = -1.56, 95%CI -2.16, -0.96, P < 0.001), and higher readmission rate (RR = 1.07, 95%CI 1.01,1.13, P = 0.029). No difference was found concerning the rate of hospitalization and invasive mechanical ventilation between the two groups. CONCLUSION: Individuals diagnosed with eosinophilic AECOPD had a reduced mortality rate, a truncated period of hospitalization, and an insubstantial increase in the probability of readmission relative to their non-eosinophilic AECOPD counterparts. The level of eosinophils in blood has been shown to serve as a potential predictive biomarker for AECOPD patients.


Subject(s)
Eosinophils , Pulmonary Disease, Chronic Obstructive , Humans , Disease Progression , Case-Control Studies , Hospitalization , Pulmonary Disease, Chronic Obstructive/diagnosis
20.
Biosensors (Basel) ; 13(12)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38131789

ABSTRACT

Timely detection of highly infectious pathogens is essential for preventing and controlling public health risks. However, most traditional testing instruments require multiple tedious steps and ultimately testing in hospitals and third-party laboratories. The sample transfer process significantly prolongs the time to obtain test results. To tackle this aspect, a portable fiber optic surface plasmon resonance (FO-SPR) device was developed for the real-time detection of infectious pathogens. The portable device innovatively integrated a compact FO-SPR sensing component, a signal acquisition and processing system, and an embedded power supply unit. A gold-plated fiber is used as the FO-SPR sensing probe. Compared with traditional SPR sensing systems, the device is smaller size, lighter weight, and higher convenience. To enhance the detection capacity of pathogens, a monolayer graphene was coated on the sensing region of the FO-SPR sensing probe. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used to evaluate the performance of the portable device. The device can accurately detect the SARS-CoV-2 spike S1 protein in phosphate-buffered saline (PBS) and artificial saliva within just 20 min, and the device successfully detected cultured SARS-CoV-2 virus. Furthermore, the FO-SPR probe has long-term stability, remaining stable for up to 8 days. It could distinguish between the SARS-CoV-2 spike protein and the MERS-CoV spike protein. Hence, this FO-SPR device provides reliable, rapid, and portable access to test results. It provides a promising point-of-care testing (POCT) tool for on-site screening of infectious pathogens.


Subject(s)
Biosensing Techniques , Graphite , Humans , Surface Plasmon Resonance/methods , Fiber Optic Technology/methods , Point-of-Care Testing , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...