Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Crit Care ; 27(1): 493, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102705

ABSTRACT

BACKGROUND: Intensive care unit-acquired weakness (ICU-AW) is a prevalent and severe issue among ICU patients. Resistance training and beta-hydroxy-beta-methylbutyrate (HMB) intervention have demonstrated the potential to enhance muscle function in patients with sarcopenia and in older adults. The purpose of this study was to determine whether resistance training and/or HMB administration would improve physical function, muscle strength, and quality of life in medical ICU patients. METHODS: In this multicentre, four-arm, single-blind randomised control trial, a total of 112 adult patients with internal medical diagnoses admitted to the ICU were enrolled. These participants were then randomly assigned to one of four treatment groups: the resistance training group received protocol-based multilevel resistance exercise, the HMB group received 3 g/day of HMBCa, combination group and control groups received standard care, from the ICU to the general ward until discharge. The primary outcomes assessed at discharge included six-minute walking distance (6MWD) and short physical performance battery (SPPB). Secondary outcomes measured included muscle mass, MRC score, grip strength, and health reports quality of life at different time points. Data analysis was performed using a generalised linear mixed model, adhering to the principles of intention-to-treat analysis. RESULTS: Resistance training and combination treatment groups exhibited significant increases in SPPB scores (3.848 and 2.832 points, respectively) compared to the control group and substantial improvements in 6WMD (99.768 and 88.577 m, respectively) (all with P < 0.01). However, no significant changes were observed in the HMB group. Muscle strength, as indicated by MRC and grip strength tests conducted at both ICU and hospital discharge, showed statistically significant improvements in the resistance training and combination groups (P < 0.05). Nevertheless, no significant differences were found between the treatment groups and usual care in terms of 60-day mortality, prevalence of ICU-AW, muscle mass, quality of life, or other functional aspects. CONCLUSIONS: Resistance training with or without beta-hydroxy-beta-methylbutyrate during the entire hospitalisation intervention improves physical function and muscle strength in medical ICU patients, but muscle mass, quality of life, and 60-day mortality were unaffected. TRIAL REGISTRATION: ChiCTR2200057685 was registered on March 15th, 2022.


Subject(s)
Resistance Training , Humans , Dietary Supplements , Intensive Care Units , Muscle Strength , Muscle, Skeletal/physiology , Patient Discharge , Quality of Life , Single-Blind Method , Adult
2.
Sci Adv ; 9(8): eade4687, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812305

ABSTRACT

Chronic wounds, particularly those associated with diabetes mellitus, represent a growing threat to public health, with additional notable economic impacts. Inflammation associated with these wounds leads to abnormalities in endogenous electrical signals that impede the migration of keratinocytes needed to support the healing process. This observation motivates the treatment of chronic wounds with electrical stimulation therapy, but practical engineering challenges, difficulties in removing stimulation hardware from the wound site, and absence of means to monitor the healing process create barriers to widespread clinical use. Here, we demonstrate a miniaturized wireless, battery-free bioresorbable electrotherapy system that overcomes these challenges. Studies based on a splinted diabetic mouse wound model confirm the efficacy for accelerated wound closure by guiding epithelial migration, modulating inflammation, and promoting vasculogenesis. Changes in the impedance provide means for tracking the healing process. The results demonstrate a simple and effective platform for wound site electrotherapy.


Subject(s)
Diabetes Mellitus , Electric Stimulation Therapy , Mice , Animals , Absorbable Implants , Electric Impedance , Wound Healing , Disease Models, Animal , Inflammation
3.
Clin Biomech (Bristol, Avon) ; 100: 105772, 2022 12.
Article in English | MEDLINE | ID: mdl-36191511

ABSTRACT

BACKGROUND: Dysphagia is one of the common complications after stroke. Dysphagia significantly increases the probability of serious adverse consequences. The purpose of this study was to compare the characteristics of submental muscles electromyography and hyoid motion parameters between patients with dysphagia after stroke and healthy controls, and whether there is a synergistic effect between the function of the submental muscles and the movement of the hyoid. METHODS: Fifteen patients with post-stroke dysphagia and fifteen healthy adults simultaneously underwent the videofluoroscopic and surface electromyography of the submental muscles while swallowing 5 ml of concentrated liquid barium sulphate. The electromyographic signal of the submental muscles was analysed along with parameters of hyoid movement. FINDINGS: Stage transition duration and duration of surface electromyographic activity were extended significantly in post-stroke dysphagia patients(P < 0.05). Surface electromyography amplitude and hyoid movement were significantly reduced in patients (P < 0.05). There was a significant correlation between the maximum hyoid movement distance and the peak sEMG amplitude in healthy controls (r = 0.660, P = 0.014), but not in patients with dysphagia after stroke (r = 0.425, P = 0.148). INTERPRETATION: Submental muscles electromyographic signal changes in patients may be the result of uncoordinated muscle contractions and decreased muscle strength. Furthermore, the reduced hyoid movement distance may be due to impaired function of the submental muscles. In addition, the submental muscles and hyoid movement or other swallowing structures functions were impaired to varying degrees, resulting in the disappearance of the correlation between the maximum movement distance of the hyoid and the peak amplitude.


Subject(s)
Hyoid Bone , Muscles , Humans
4.
Front Oncol ; 12: 817660, 2022.
Article in English | MEDLINE | ID: mdl-35769717

ABSTRACT

The papillary thyroid carcinoma (PTC) metastasizes through lymphatic spread, but the follicular thyroid cancer (FTC) metastasis occurs by following hematogenous spread. To date, the molecular mechanism underlying different metastatic routes between PTC and FTC is still unclear. Here, we showed that specifically androgen-regulated gene (SARG) was significantly up-regulated in PTC, while obviously down-regulated in FTC through analyzing the Gene Expression Omnibus (GEO) database. Immunohistochemistry assay verified that the PTC lymph node metastasis was associated with higher levels of SARG protein in clinical PTC patient samples. SARG-knockdown decreased TPC-1 and CGTH-W3 cells viability and migration significantly. On the contrary, SARG-overexpressed PTC cells possessed more aggressive migratory ability and viability. In vivo, SARG overexpression dramatically promoted popliteal lymph node metastasis of xenografts from TPC-1 cells mouse footpad transplanting. Mechanistically, SARG overexpression and knockdown significantly increased and decreased the expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor 3 (VEGFR-3), respectively, thereby facilitating or inhibiting the tube formation in HUVECs. The tube formation experiment showed that SARG overexpression and knockdown promoted or inhibited the number of tube formations in HUVEC cells, respectively. Taken together, we showed for the first time the differential expression profile of SARG between PTC and FTC, and SARG promotes PTC lymphatic metastasis via VEGF-C/VEGFR-3 signal. It indicates that SARG may represent a target for clinical intervention in lymphatic metastasis of PTC.

5.
Sci Robot ; 7(66): eabn0602, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35613299

ABSTRACT

Robots with submillimeter dimensions are of interest for applications that range from tools for minimally invasive surgical procedures in clinical medicine to vehicles for manipulating cells/tissues in biology research. The limited classes of structures and materials that can be used in such robots, however, create challenges in achieving desired performance parameters and modes of operation. Here, we introduce approaches in manufacturing and actuation that address these constraints to enable untethered, terrestrial robots with complex, three-dimensional (3D) geometries and heterogeneous material construction. The manufacturing procedure exploits controlled mechanical buckling to create 3D multimaterial structures in layouts that range from arrays of filaments and origami constructs to biomimetic configurations and others. A balance of forces associated with a one-way shape memory alloy and the elastic resilience of an encapsulating shell provides the basis for reversible deformations of these structures. Modes of locomotion and manipulation span from bending, twisting, and expansion upon global heating to linear/curvilinear crawling, walking, turning, and jumping upon laser-induced local thermal actuation. Photonic structures such as retroreflectors and colorimetric sensing materials support simple forms of wireless monitoring and localization. These collective advances in materials, manufacturing, actuation, and sensing add to a growing body of capabilities in this emerging field of technology.


Subject(s)
Robotics , Smart Materials , Biomimetics , Locomotion , Walking
6.
Biomed Eng Online ; 20(1): 103, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34645468

ABSTRACT

BACKGROUND: Traditional Chinese medicine has been found effective for the therapy of knee osteoarthritis (KOA). This study was aimed at investigating the underlying mechanism of Bugan Rongjin decoction (BGRJ) in treating the postmenopausal KOA. RESULTS: Ovariectomized rat model of KOA and LPS-induced chondrocytes were successfully constructed for in vivo and in vitro model of postmenopausal KOA. X-ray and hematoxylin-eosin (H&E) staining showed that BGRJ alleviated pathological damage of articular cartilage in OVX rats with KOA. In addition, BGRJ inhibited inflammation and oxidative stress through decreasing the levels of serum IL-6, IL-1ß, TNF-α and NO and regulated Wnt signaling pathway by downregulating the expression of Wnt5a and ß-catenin and upregulating the expression of Sox9 and Collagen II in cartilage tissue, detected by immunohistochemistry (IHC) and western blot analysis. Furthermore, Wnt5a silencing reduced the apoptosis of LPS-induced ADTC5 cells, which was further suppressed by the combination of downregulation of Wnt5a and BGRJ. CONCLUSIONS: In summary, BGRJ alleviates inflammation and oxidative stress to treat the postmenopausal KOA through Wnt signaling pathway.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Animals , Chondrocytes , Inflammation/drug therapy , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Oxidative Stress , Postmenopause , Rats , Wnt Signaling Pathway
7.
BME Front ; 2021: 8653218, 2021.
Article in English | MEDLINE | ID: mdl-37849909

ABSTRACT

Objective and Impact Statement. Real-time monitoring of the temperatures of regional tissue microenvironments can serve as the diagnostic basis for treating various health conditions and diseases. Introduction. Traditional thermal sensors allow measurements at surfaces or at near-surface regions of the skin or of certain body cavities. Evaluations at depth require implanted devices connected to external readout electronics via physical interfaces that lead to risks for infection and movement constraints for the patient. Also, surgical extraction procedures after a period of need can introduce additional risks and costs. Methods. Here, we report a wireless, bioresorbable class of temperature sensor that exploits multilayer photonic cavities, for continuous optical measurements of regional, deep-tissue microenvironments over a timeframe of interest followed by complete clearance via natural body processes. Results. The designs decouple the influence of detection angle from temperature on the reflection spectra, to enable high accuracy in sensing, as supported by in vitro experiments and optical simulations. Studies with devices implanted into subcutaneous tissues of both awake, freely moving and asleep animal models illustrate the applicability of this technology for in vivo measurements. Conclusion. The results demonstrate the use of bioresorbable materials in advanced photonic structures with unique capabilities in tracking of thermal signatures of tissue microenvironments, with potential relevance to human healthcare.

8.
Sci Transl Med ; 12(574)2020 12 16.
Article in English | MEDLINE | ID: mdl-33328330

ABSTRACT

Precise form-fitting of prosthetic sockets is important for the comfort and well-being of persons with limb amputations. Capabilities for continuous monitoring of pressure and temperature at the skin-prosthesis interface can be valuable in the fitting process and in monitoring for the development of dangerous regions of increased pressure and temperature as limb volume changes during daily activities. Conventional pressure transducers and temperature sensors cannot provide comfortable, irritation-free measurements because of their relatively rigid construction and requirements for wired interfaces to external data acquisition hardware. Here, we introduce a millimeter-scale pressure sensor that adopts a soft, three-dimensional design that integrates into a thin, flexible battery-free, wireless platform with a built-in temperature sensor to allow operation in a noninvasive, imperceptible fashion directly at the skin-prosthesis interface. The sensor system mounts on the surface of the skin of the residual limb, in single or multiple locations of interest. A wireless reader module attached to the outside of the prosthetic socket wirelessly provides power to the sensor and wirelessly receives data from it, for continuous long-range transmission to a standard consumer electronic device such as a smartphone or tablet computer. Characterization of both the sensor and the system, together with theoretical analysis of the key responses, illustrates linear, accurate responses and the ability to address the entire range of relevant pressures and to capture skin temperature accurately, both in a continuous mode. Clinical application in two prosthesis users demonstrates the functionality and feasibility of this soft, wireless system.


Subject(s)
Artificial Limbs , Electric Power Supplies , Prosthesis Design , Skin , Temperature
9.
J Anal Methods Chem ; 2020: 8837526, 2020.
Article in English | MEDLINE | ID: mdl-33163243

ABSTRACT

The purpose of this work is to establish a new method using high-performance liquid chromatography-diode array detection (HPLC-DAD) with chemometrics analysis to determine the content of catechin, isoquercetin, astragalin, phloridzin, trilobatin, and phloretin for one flavanol and five flavonoids, filter out the key compounds, and evaluate the quality of 26 batches of tender leaves and flower spikes of Lithocarpus polystachyus Rehd. (LP) from ten areas in China. The result showed that the HPLC-DAD method had excellent performance for accurate quantification analysis. S3 (tender leaf from Lushan, Sichuan) had the highest contents for six measured chemicals with trilobatin content of up to 27.82% in dry weight. S22 (flower spike from Liangping, Chongqing) had the highest content of phloridzin (up to 7.28%). All samples were divided into three types based on spatial distribution using principal component analysis. The result showed that the tender leaves and flower spikes from the same areas had many similar properties, and there were significant differences between the samples from different regions. Furthermore, phloridzin and trilobatin were identified as chemical markers for quality evaluation of two parts with different tender leaves and flower spikes of LP from geographical areas by orthogonal partial least squares discrimination analysis. These results will be helpful to establish an effective and comprehensive evaluation system of the development and utilization of LP resources.

10.
Nat Biomed Eng ; 4(10): 997-1009, 2020 10.
Article in English | MEDLINE | ID: mdl-32895515

ABSTRACT

The rigidity and relatively primitive modes of operation of catheters equipped with sensing or actuation elements impede their conformal contact with soft-tissue surfaces, limit the scope of their uses, lengthen surgical times and increase the need for advanced surgical skills. Here, we report materials, device designs and fabrication approaches for integrating advanced electronic functionality with catheters for minimally invasive forms of cardiac surgery. By using multiphysics modelling, plastic heart models and Langendorff animal and human hearts, we show that soft electronic arrays in multilayer configurations on endocardial balloon catheters can establish conformal contact with curved tissue surfaces, support high-density spatiotemporal mapping of temperature, pressure and electrophysiological parameters and allow for programmable electrical stimulation, radiofrequency ablation and irreversible electroporation. Integrating multimodal and multiplexing capabilities into minimally invasive surgical instruments may improve surgical performance and patient outcomes.


Subject(s)
Cardiac Catheters , Electronics/instrumentation , Monitoring, Intraoperative/instrumentation , Monitoring, Intraoperative/methods , Animals , Catheter Ablation , Electroporation , Equipment Design , Female , Finite Element Analysis , Heart Ventricles/surgery , Humans , Pressure , Rabbits , Temperature
11.
ACS Appl Mater Interfaces ; 12(21): 24218-24230, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32374587

ABSTRACT

Specific geometric morphology and improved crystalline properties are of great significance for the development of materials in micro-nano scale. However, for high-melting molybdenum (Mo), it is difficult to get high-quality structures exhibiting a single-crystalline nature and preconceived morphology simultaneously. In this paper, a pyramid-shaped single-crystalline Mo nanostructure was prepared through a thermal evaporation technique, as well as a series of experimental controls. Based on detailed characterizations, the growth mechanism was demonstrated to follow a sequential process that includes MoO2 decomposition and Mo deposition, single-crystalline islands formation, layered nucleation, and competitive growth. Furthermore, the product was measured to show excellent physical properties. The prepared nanostructures exhibited strong nano-indentation hardness, elastic modulus, and tensile strength in mechanical measurements, which are much higher than those of the Mo bulks. In the measurement of electronic characteristics, the individual structures indicated very good electrical transport properties, with a conductance of ∼0.16 S. The prepared film with an area of 0.02 cm2 showed large-current electron emission properties with a maximum current of 33.6 mA and a current density of 1.68 A cm-2. Optical properties of the structures were measured to show obvious electromagnetic field localization and enhancement, which enabled it to have good surface enhanced Raman scattering (SERS) activity as a substrate material. The corresponding structure-response relationships were further discussed. The reported physical properties profit from the basic features of the Mo nanostructures, including the micro-nano scale, the single-crystalline nature in each grain, as well as the pyramid-shaped top morphology. The findings may provide a potential material for the research and application of micro-nano electrons and photons.

12.
Chirality ; 31(12): 1053-1059, 2019 12.
Article in English | MEDLINE | ID: mdl-31633239

ABSTRACT

Chiral mesoporous silica (CMS) has attracted widespread attention because of some unique properties, such as high surface area, uniformly structured nanoscale cavities, and excellent chemical and thermal stability. In this work, we report the utilization of a CMS as the stationary phase for the separation of racemates in gas chromatography (GC). A CMS-coated capillary column was fabricated by a dynamic coating method. Eighteen racemates belonging to different classes of organic compounds were separated on this column, including chiral alcohols, aldehydes, ketones, organic acids, halohydrocarbons, alkenes, alcohol amines, epoxides, and amino acid derivatives. In addition, linear alkanes, alcohols, and aromatic hydrocarbons have also been resolved.

13.
Nanotechnology ; 30(44): 445202, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31349235

ABSTRACT

The in situ characterization on the individuals offers an effective way to explore the dynamic behaviors and underlying physics of materials at the nanoscale, and this is of benefit for actual applications. In the field of vacuum micro-nano electronics, the existing in situ techniques can obtain the material information such as structure, morphology and composition in the process of electron emission driven by a single source of excitation. However, the relevant process and mechanism become more complicated when two or more excitation sources are commonly acted on the emitters. In this paper, we present an in situ nano characterization technique to trigger and record the electron emission behavior under the photo-electric-common-excitation multiple physical fields. Specifically, we probed into the in situ electron emission from an individual vertical few-layer graphene (vFLG) emitter under a laser-plus-electrostatic driving field. Electrons were driven out from the vFLG's emission edge, operated in situ under an external electrostatic field coupled with a 785 nm continuous-wave laser-triggered optical field. The incident light has been demonstrated to significantly improve the electron emission properties of graphene, which were recorded as an obvious decrease of the turn-on voltage, a higher emission current by factor of 35, as well as a photo-response on-off ratio as high as 5. More importantly, during their actual electron emission process, a series of in situ characterizations such as SEM observation and Raman spectra were used to study the structure, composition and even real-time Raman frequency changes of the emitters. These information can further reveal the key factors for the electron emission properties, such as field enhancement, work function and real-time surface temperature. Thereafter, the emission mechanism of vFLG in this study has been semi-quantitatively demonstrated to be the two concurrent processes of photon-assisted thermal enhanced field emission and photo field emission.

14.
ACS Appl Mater Interfaces ; 11(11): 10729-10735, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30799597

ABSTRACT

Charge density wave (CDW) as a novel effect in two-dimensional transition metal dichalcogenides (TMDs) has obtained a rapid rise of interest for its physical nature and potential applications in oscillators and memory devices. Here, we report var der Waals epitaxial growth of centimeter-scale 1T-VTe2 thin films on mica by molecular beam epitaxy. The VTe2 thin films showed sudden resistance change at temperatures of 240 and 135 K, corresponding to two CDW phase transitions driven by temperature. Moreover, the phase transitions can be driven by an electric field due to local Joule heating, and the corresponding resistance states are nonvolatile and controllable, which could be applied to the memory device where the logic states can be switched by an electric field. The multistage CDW phase transitions in the VTe2 thin films could be contributed to electron-phonon coupling in the two-dimensional VTe2, which is supported by twice pronounced Raman blue shifts of the vibration modes associated with in-plane phonons at CDW phase transition temperature. The results open up a new platform for understanding the microscopic physical essence and electrical control of CDW phases of TMDs, expanding the functionalities of these materials for memory applications.

15.
ACS Nano ; 13(2): 1977-1989, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30747519

ABSTRACT

Light-driven electron emission plays an important role in modern optoelectronic devices. However, such a process usually requires a light field with either a high intensity or a high frequency, which is not favorable for its implementations and difficult for its integrations. To solve these issues, we propose to combine plasmonic nanostructures with nanoelectron emitters of low work function. In such a heterostructure, hot electrons generated by plasmon resonances upon light excitation can be directly injected into the adjacent emitter, which can subsequently be emitted into the vacuum. Electron emission of high efficiency can be obtained with light fields of moderate intensities and visible wavelengths, which is a plasmon-mediated electron emission (PMEE) process. We have demonstrated our proposed design using a gold-on-graphene (Au-on-Gr) nanostructure, which can have electron emission with light intensity down to 73 mW·cm-2. It should be noted that the field electron emission is not involved in such a PMEE process. This proposal is of interest for applications including cold-cathode electron sources, advanced photocathodes, and micro- and nanoelectronic devices relying on free electrons.

16.
Se Pu ; 37(12): 1275-1281, 2019 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-34213128

ABSTRACT

Chiral columns based on cellulose tri(3,5-dimethyl phenylcarbamate) (CTDMPC) have been extensively used for enantioseparation by high-performance liquid chromatography (HPLC). The effects of cellulose derived using different amounts of 3,5-dimethyl phenylcarbamate and silica gels prepared by different methods on the chiral separation characteristics have been investigated. Thirteen chiral chromatographic columns were prepared, and their separation capability for sixteen racemate samples was evaluated. The efficiency of enantioselective resolution followed the order trisubstituted cellulose column > disubstituted cellulose column > cellulose column. Refine silica gel and macroporous silica gel showed better performance than did coarse silica gel. The use of macroporous silica gel resulted in low column pressure. Whether the silica gels were derived by aminopropyl could affect the enantioseparations. The thirteen chiral chromatographic columns were complementary for the separation of racemates, especially the cellulose column. This is a comparative study on the preparation of chiral stationary phases for HPLC, and the findings would enable us to design and fabricate chromatographic columns.

17.
Adv Mater ; 30(44): e1804616, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30589471

ABSTRACT

2D metallic transition metal dichalcogenides (MTMDCs) are benchmark systems for uncovering the dimensionality effect on fascinating quantum physics, such as charge-density-wave (CDW) order, unconventional superconductivity, and magnetism, etc. However, the scalable and thickness-tunable syntheses of such envisioned MTMDCs are still challenging. Meanwhile, the origin of CDW order at the 2D limit is controversial. Herein, the direct synthesis of wafer-scale uniform monolayer 2H-TaSe2 films and thickness-tunable flakes on Au foils by chemical vapor deposition is accomplished. Based on the thickness-tunable 2H-TaSe2, the robust periodic lattice distortions that relate to CDW orders by low-temperature transmission electron microscopy are directly visualized. Particularly, a phase diagram of the transition temperature from normal metallic to CDW phases with thickness by variable-temperature Raman characterizations is established. Intriguingly, dramatically enhanced transition temperature from bulk value ≈90 to ≈125 K is observed from monolayer 2H-TaSe2, which can be explained by the enhanced electron-phonon coupling mechanism. More importantly, an ultrahigh specific capacitance is also obtained for the as-grown TaSe2 on carbon cloth as supercapacitor electrodes. The results hereby open up novel avenues toward the large-scale preparation of high-quality MTMDCs, and shed light on their applications in exploring some fundamental issues.

18.
ACS Omega ; 3(10): 14181-14187, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30411061

ABSTRACT

Localized surface plasmon resonance (LSPR) biosensors show great potential for practical/commercial use in clinical diagnosis, home healthcare, environmental analysis, and public healthcare. However, two main issues, that is, low refractometric sensitivity and low reproducibility (large-area uniformity and batch-to-batch consistency), hinder the extensive applications of LSPR biosensors. Therefore, plasmonic nanostructures with high sensitivity and excellent reproducibility are desirable for preparing reliable LSPR sensors. Herein, we have fabricated plasmonic nanopyramid arrays (NPAs) for several batches with reproducible morphology and optical properties by elastic soft lithography and metal thermal evaporation. NPAs of various metals (i.e., Al, Au, and Ag) were also prepared by thermal evaporation with the according metals. The transmission spectra of these NPAs showed several narrow LSPR peaks in the visible-infrared wavelength region. The refractometric sensitivities of the LSPR peaks were systematically studied, and high refractometric sensitivities of 774.0, 472.8, and 421.0 nm/RIU were achieved on Al, Au, and Ag NPAs, respectively. To demonstrate the potential of the NPAs for multiplex applications, we first applied this highly sensitive Al NPA biosensor to monitoring the process of proliferation of HeLa cancer cells, in situ and in real time. Then, we demonstrated that the Au NPA was able to identify the absorbed analytes on its surface through the surface-enhanced Raman scattering spectrum. In addition, the finite difference time domain simulations were performed to reveal the electromagnetic field enhancement on NPAs. Because of the properties of high sensitivity and excellent reproducibility of the metal NPA LSPR substrates, as well as the simplicity and cost efficiency of the fabrication method, our proposed work will accelerate the practical use of LSPR sensors.

19.
Small ; 13(47)2017 12.
Article in English | MEDLINE | ID: mdl-29094464

ABSTRACT

A novel and robust epidermal strain gauge by using 3D microsphere arrays to immobilize, connect, and protect a multiwalled carbon nanotubes (MWNTs) pathway is presented. During the solvent deposition process, MWNTs sedimentate, self-assemble, and wrap onto surface of polystyrene (PS) microspheres to construct conductive networks, which further obtain excellent stretchability of 100% by combining with commercially used elastomer. Benefiting from its 3D conductive pathway defined by microspheres, immobilized MWNT (I-MWNT) network can be directly used in practical occasions without further packaging and is proved by tape tests to be capable of defend mechanical damage effectively from external environment. By parameter optimization, the strain sensor with 3 µm PS spheres obtains stable resistive responses for more than 1000 times, and maintains its gauge factor (GF) of 1.35. This thin-film conductive membrane built by this effective construction method can be easily attached onto fingers of both robot and human, and is demonstrated in sensitive epidermal strain sensing and recognizing different hand gestures effectively, in static and dynamic modes, respectively.

20.
Small ; 13(39)2017 10.
Article in English | MEDLINE | ID: mdl-28786559

ABSTRACT

Rapid improvement of wearable electronics stimulates the demands for the matched functional devices and energy storage devices. Meanwhile, wearable microsystem requires every parts possessing high compressibility to accommodate large-scale mechanical deformations and complex conditions. In this work, a general carbon nanotube-polydimethylsiloxane (CNT-PDMS) sponge electrode is fabricated as the elementary component of the compressible system. CNT-PDMS sponge performs high sensitivity as a piezoresistance sensor, which is capable of detecting stress repeatedly and owns great electrochemical performance as a compressible supercapacitor which maintains stably under compressive strains, respectively. Assembled with the piezoresistance sensor and the compressible supercapacitor, such highly compressible integrated system can power and modulate the low-power electronic devices reliably. More importantly, attached to the epidermal skin or clothes, it can detect human motions, ranging from speech recognition to breathing record, thus showing feasibility in real-time health monitor and human-machine interfaces.


Subject(s)
Dimethylpolysiloxanes/chemistry , Electric Capacitance , Electric Impedance , Monitoring, Physiologic/methods , Nanotubes, Carbon/chemistry , Electrochemistry , Nanotubes, Carbon/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...