Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.091
Filter
2.
Article in English | MEDLINE | ID: mdl-38993015

ABSTRACT

All-solid-state lithium-ion batteries (ASSLIBs) using sulfide electrolytes and high-capacity alloy-type anodes have attracted sizable interest due to their potential excellent safety and high energy density. Encapsulating insulating red phosphorus (P) inside nanopores of a carbon matrix can adequately activate its electrochemical alloying reaction with lithium. Therefore, the porosity of the carbon matrix plays a crucial role in the electrochemical performance of the resulting red P/carbon composites. Here, we use zeolite-templated carbon (ZTC) with monodisperse micropores and mesoporous carbon (CMK-3) with uniform mesopores as the model hosts of red P. Our results reveal that micropores enable more effective pore utilization for the red P loading, and the P@ZTC material can achieve a record-high content (65.0 wt %) of red P confined within pores. When used as an anode of ASSLIBs, the P@ZTC electrode delivers an ultrahigh capacity of 1823 mA h g-1 and a high initial Coulombic efficiency of 87.44%. After 400 deep discharge-charge cycles (running over 250 days) at 0.2 A g-1, the P@ZTC electrode still holds a reversible capacity of 1260 mA h g-1 (99.92% capacity retention per cycle). Moreover, a P@ZTC||LiNi0.8Co0.1Mn0.1O2 full cell can deliver a reversible areal capacity of over 3 mA h cm-2 at 0.1C after 100 cycles.

3.
Materials (Basel) ; 17(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998191

ABSTRACT

Fatigue cracking is one of the primary distresses of asphalt pavements, which significantly affects the asphalt pavement performance. The fatigue behavior of the asphalt mixture observed in the laboratory test can vary depending on the type of fatigue test and the dimension and shape of the test specimen. The variations can make it difficult to accurately evaluate the fatigue properties of the field asphalt concrete. Accordingly, this study proposed a reliable method to evaluate the fatigue behavior of the asphalt field cores based on discrete element modeling (DEM). The mesoscopic geometric model was built using discrete element software PFC (Particle Flow Code) and CT scan images of the asphalt field cores. The virtual fatigue test was simulated in accordance with the semi-circular bending (SCB) test. The mesoscopic parameters of the contacting model in the virtual test were determined through the uniaxial compression dynamic modulus test and SCB test. Based on the virtual SCB test, the displacement, contact forces, and crack growth were analyzed. The test results show that the fatigue life simulated in the virtual test was consistent with that of the SCB fatigue test. The fatigue cracks in the asphalt mixture were observed in three stages, i.e., crack initiation, crack propagation, and failure. It was found that the crack propagation stage consumes a significant portion of the fatigue life since the tensile contact forces mainly increase in this stage.

4.
ACS Nano ; 18(28): 18712-18728, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38952208

ABSTRACT

Immunotherapy can potentially suppress the highly aggressive glioblastoma (GBM) by promoting T lymphocyte infiltration. Nevertheless, the immune privilege phenomenon, coupled with the generally low immunogenicity of vaccines, frequently hampers the presence of lymphocytes within brain tumors, particularly in brain tumors. In this study, the membrane-disrupted polymer-wrapped CuS nanoflakes that can penetrate delivery to deep brain tumors via releasing the cell-cell interactions, facilitating the near-infrared II (NIR II) photothermal therapy, and detaining dendritic cells for a self-cascading immunotherapy are developed. By convection-enhanced delivery, membrane-disrupted amphiphilic polymer micelles (poly(methoxypoly(ethylene glycol)-benzoic imine-octadecane, mPEG-b-C18) with CuS nanoflakes enhances tumor permeability and resides in deep brain tumors. Under low-power NIR II irradiation (0.8 W/cm2), the intense heat generated by well-distributed CuS nanoflakes actuates the thermolytic efficacy, facilitating cell apoptosis and the subsequent antigen release. Then, the positively charged polymer after hydrolysis of the benzoic-imine bond serves as an antigen depot, detaining autologous tumor-associated antigens and presenting them to dendritic cells, ensuring sustained immune stimulation. This self-cascading penetrative immunotherapy amplifies the immune response to postoperative brain tumors but also enhances survival outcomes through effective brain immunotherapy.


Subject(s)
Brain Neoplasms , Cell Membrane , Dendritic Cells , Immunotherapy , Infrared Rays , Dendritic Cells/immunology , Dendritic Cells/drug effects , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Animals , Mice , Humans , Cell Membrane/chemistry , Cell Line, Tumor , Micelles , Nanoparticles/chemistry , Photothermal Therapy , Polyethylene Glycols/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Apoptosis/drug effects
5.
Environ Sci Technol ; 58(28): 12356-12367, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953388

ABSTRACT

Unhealthy lifestyles, obesity, and environmental pollutants are strongly correlated with the development of nonalcoholic fatty liver disease (NAFLD). Haloacetaldehyde-associated disinfection byproducts (HAL-DBPs) at various multiples of concentrations found in finished drinking water together with high-fat (HF) were examined to gauge their mixed effects on hepatic lipid metabolism. Using new alternative methods (NAMs), studying effects in human cells in vitro for risk assessment, we investigated the combined effects of HF and HAL-DBPs on hepatic lipid metabolism and lipotoxicity in immortalized LO-2 human hepatocytes. Coexposure of HAL-DBPs at various multiples of environmental exposure levels with HF increased the levels of triglycerides, interfered with de novo lipogenesis, enhanced fatty acid oxidation, and inhibited the secretion of very low-density lipoproteins. Lipid accumulation caused by the coexposure of HAL-DBPs and HF also resulted in more severe lipotoxicity in these cells. Our results using an in vitro NAM-based method provide novel insights into metabolic reprogramming in hepatocytes due to coexposure of HF and HAL-DBPs and strongly suggest that the risk of NAFLD in sensitive populations due to HAL-DBPs and poor lifestyle deserves further investigation both with laboratory and epidemiological tools. We also discuss how results from our studies could be used in health risk assessments for HAL-DBPs.


Subject(s)
Hepatocytes , Lipid Metabolism , Humans , Lipid Metabolism/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Disinfection , Liver/metabolism , Liver/drug effects , Acetaldehyde/toxicity , Cell Line
6.
J Biol Chem ; : 107534, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981533

ABSTRACT

Seipin, a crucial protein for cellular lipid droplet (LD) assembly, oligomerizes at the interface between the endoplasmic reticulum (ER) and LDs to facilitate neutral lipid packaging. Using proximity labeling, we identify four proteins-Ldo45, Ldo16, Tgl4, and Pln1-that are recruited to the vicinity of yeast seipin, the Sei1-Ldb16 complex, exclusively when seipin function is intact, hence termed seipin accessory factors. Localization studies identify Tgl4 at the ER-LD contact site, in contrast to Ldo45, Ldo16 and Pln1 at the LD surface. Cells with compromised seipin function resulted in uneven distribution of these proteins with aberrant LDs, supporting a central role of seipin in orchestrating their association with the LD. Overexpression of any seipin accessory factor causes LD aggregation and affects a subset of LD protein distribution, highlighting the importance of their stoichiometry. Although single factor mutations show minor LD morphology changes, combined mutations have additive effects. Lastly, we present evidence that seipin accessory factors assemble and interact with seipin in the absence of neutral lipids and undergo dynamically rearrangements during LD formation induction, with Ldo45 acting as a central hub recruiting other factors to interact with the seipin complex.

7.
Cell Rep ; 43(7): 114426, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959109

ABSTRACT

Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.

8.
J Math Biol ; 89(2): 27, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970664

ABSTRACT

Cancer, a disease intimately linked to cellular mutations, is commonly believed to exhibit a positive association with the cell count and lifespan of a species. Despite this assumption, the observed uniformity in cancer rates across species, referred to as the Peto's paradox, presents a conundrum. Recognizing that tumour progression is not solely dependent on cancer cells but involves intricate interactions among various cell types, this study employed a Lotka-Volterra (LV) ordinary differential equation model to analyze the evolution of cancerous cells and the cancer incidence in an immune environment. As a result, this study uncovered the sufficient conditions underlying the absence of correlation in Peto's paradox and provide insights into the reasons for the equitable distribution of cancer incidence across diverse species by applying nondimensionalization and drawing an analogy between the characteristic time interval for the variation of cell populations in the ODE model and that of cell cycles of a species.


Subject(s)
Mathematical Concepts , Models, Biological , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/epidemiology , Mutation , Disease Progression , Tumor Microenvironment/immunology , Cell Cycle , Animals , Cell Count/statistics & numerical data , Incidence , Computer Simulation
9.
Sci Adv ; 10(28): eadl5606, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985880

ABSTRACT

Abnormal transcription initiation from alternative first exon has been reported to promote tumorigenesis. However, the prevalence and impact of gene expression regulation mediated by alternative tandem transcription initiation were mostly unknown in cancer. Here, we developed a robust computational method to analyze alternative tandem transcription start site (TSS) usage from standard RNA sequencing data. Applying this method to pan-cancer RNA sequencing datasets, we observed widespread dysregulation of tandem TSS usage in tumors, many of which were independent of changes in overall expression level or alternative first exon usage. We showed that the dynamics of tandem TSS usage was associated with epigenomic modulation. We found that significant 5' untranslated region shortening of gene TIMM13 contributed to increased protein production, and up-regulation of TIMM13 by CRISPR-mediated transcriptional activation promoted proliferation and migration of lung cancer cells. Our findings suggest that dysregulated tandem TSS usage represents an addtional layer of cancer-associated transcriptome alterations.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplasms , Transcription Initiation Site , Transcriptome , Humans , Gene Expression Profiling/methods , Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics
10.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000306

ABSTRACT

The unique structure of G4.0 PAMAM dendrimers allows a drug to be enclosed in internal spaces or immobilized on the surface. In the conducted research, the conditions for the formation of the active G4.0 PAMAM complex with doxorubicin hydrochloride (DOX) were optimized. The physicochemical properties of the system were monitored using dynamic light scattering (DLS), circular dichroism (CD), and fluorescence spectroscopy. The Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method was chosen to determine the preferential conditions for the complex formation. The highest binding efficiency of the drug to the cationic dendrimer was observed under basic conditions when the DOX molecule was deprotonated. The decrease in the zeta potential of the complex confirms that DOX immobilizes through electrostatic interaction with the carrier's surface amine groups. The binding constants were determined from the fluorescence quenching of the DOX molecule in the presence of G4.0 PAMAM. The two-fold way of binding doxorubicin in the structure of dendrimers was visible in the Isothermal calorimetry (ITC) isotherm. Fluorescence spectra and release curves identified the reversible binding of DOX to the nanocarrier. Among the selected cancer cells, the most promising anticancer activity of the G4.0-DOX complex was observed in A375 malignant melanoma cells. Moreover, the preferred intracellular location of the complexes concerning the free drug was found, which is essential from a therapeutic point of view.


Subject(s)
Dendrimers , Doxorubicin , Dendrimers/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Cell Line, Tumor , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Cell Survival/drug effects
12.
J Colloid Interface Sci ; 675: 989-998, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39003818

ABSTRACT

In this paper, a novel, simple and mild soft template assisted strategy and further carbonization approach has been constructed to the size-tunable preparation of porous Cu-N-C/Surfactant catalysts successfully. Note that the pluronic F127 has a significant influence on the synthesis of porous Cu-N-C/F127 with the atomically dispersed Cu-N4 and adjacent Cu atomic clusters (ACs) than other surfactants owing to their particular non-ionic structure. By combining a series of experimental analysis and density functional theory (DFT) calculations, the synergistic effects between the adjacent Cu ACs and atomically dispersed Cu-N4 are favorable for manipulating the binding energy of O2 adsorption and intermediates desorption at the atomic interface of catalysts, resulting in an excellent electrocatalytic ORR performance with a faster kinetics for Cu-N-C/F127 than those of the Cu-N-C, Cu-N-C/CTAB, Cu-N-C/SDS, and comparable with the commercial Pt/C catalyst. This method not only provides a novel approach for synthesizing highly effective copper based single atom catalysts toward ORR, but also offers an in-depth understanding of the synergisms of adjacent ACs on the Cu single atoms (SAs) for highly effective electrocatalytic ORR and Zn-air Battery.

13.
Taiwan J Obstet Gynecol ; 63(4): 545-548, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39004484

ABSTRACT

OBJECTIVE: We present prenatal diagnosis of de novo 10p12.1p11.23 microdeletion encompassing the WAC gene in a fetus associated with bilateral hydronephrosis on prenatal ultrasound. CASE REPORT: A 40-year-old, gravida 2, para 1, woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY. Level II ultrasound at 22 weeks of gestation revealed bilateral hydronephrosis and right clubfoot. At 23 weeks of gestation, repeat amniocentesis revealed the result of arr [GRCh37] 10p12.1p11.23 (26,182,512-29,826,276) × 1 dn with a 3.6-Mb microdeletion of 10p12.1p11.23 encompassing the genes of MYO3A, GAD2, APBB1IP, PDSS1, ABI1, ANKRD26, YME1L1, MASTL, ACBD5, PTCHD3, RAB18, MKX, ODAD2, MPP7, WAC and BAMBI. The pregnancy was subsequently terminated, and a malformed fetus was delivered with facial dysmorphism of low-set ears, broad forehead and flat nasal bridge. Array comparative genomic hybridization (aCGH) analysis of umbilical cord confirmed a 3.6-Mb 10p12.1p11.23 microdeletion encompassing WAC. CONCLUSION: Application of aCGH is useful in the pregnancy with a normal fetal karyotype and abnormal fetal ultrasound.


Subject(s)
Amniocentesis , Chromosome Deletion , Chromosomes, Human, Pair 10 , Clubfoot , Hydronephrosis , Ultrasonography, Prenatal , Humans , Female , Clubfoot/genetics , Clubfoot/diagnostic imaging , Pregnancy , Adult , Hydronephrosis/genetics , Hydronephrosis/diagnostic imaging , Chromosomes, Human, Pair 10/genetics , Abortion, Induced
15.
Dig Liver Dis ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39004553

ABSTRACT

BACKGROUND: We aimed to establish a prognostic predictive model based on machine learning (ML) methods to predict the 28-day mortality of acute-on-chronic liver failure (ACLF) patients, and to evaluate treatment effectiveness. METHODS: ACLF patients from six tertiary hospitals were included for analysis. Features for ML models' development were selected by LASSO regression. Models' performance was evaluated by area under the curve (AUC) and accuracy. Shapley additive explanation was used to explain the ML model. RESULTS: Of the 736 included patients, 587 were assigned to a training set and 149 to an external validation set. Features selected included age, hepatic encephalopathy, total bilirubin, PTA, and creatinine. The eXtreme Gradient Boosting (XGB) model outperformed other ML models in the prognostic prediction of ACLF patients, with the highest AUC and accuracy. Delong's test demonstrated that the XGB model outperformed Child-Pugh score, MELD score, CLIF-SOFA, CLIF-C OF, and CLIF-C ACLF. Sequential assessments at baseline, day 3, day 7, and day 14 improved the predictive performance of the XGB-ML model and can help clinicians evaluate the effectiveness of medical treatment. CONCLUSIONS: We established an XGB-ML model to predict the 28-day mortality of ACLF patients as well as to evaluate the treatment effectiveness.

16.
Chem Soc Rev ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005165

ABSTRACT

As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.

17.
Disabil Rehabil ; : 1-11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950559

ABSTRACT

PURPOSE: Children with Special Health Care Needs (CSHCN) may experience disruptions in education due to extended hospitalizations. The purpose of this study was to describe how CSHCN experience educational supports during inpatient rehabilitation and identify the ongoing challenges when planning to return to school. MATERIALS AND METHODS: Semi-structured focus groups were conducted with parents (n = 12), former patients (n = 20), and rehabilitation professionals (n = 8). RESULTS: Through qualitative thematic analysis based on descriptive phenomenology, we developed three themes: 1) Inpatient educational support such as instruction and schoolwork helped reduce the learning loss during hospitalization. However, these supports were sometimes complicated by lags in school approvals and challenges in coordination between systems. 2) Transition planning involved establishing necessary services to support CSHCN's educational and healthcare needs at school re-entry. However, families reported limited information and guidance as key barriers. 3) Dynamic courses of school re-entry required continued support after discharge. The participants recommended that reassessment and adjustment of transition plans were often necessary to account for evolving developmental and educational needs but were not always received. CONCLUSIONS: There is an ongoing need to improve communication between clinicians and educators, information for families, and long-term follow-up on the changing educational needs for CSHCN after rehabilitation.


School re-entry after extended hospitalization is challenging for children with special health care needs (CSHCN) due to school disruption, social disconnection, and change in functional abilities.The hospital-to-school transition processes include inpatient educational programs during hospitalization, pre-discharge transition planning, and the subsequent implementation and adjustment of transition plans to facilitate individualized school re-entry.Key areas in need of improving school re-entry include coordination between the hospital and school about rehabilitation and educational goals and information provided to families about transition processes, particularly for newly acquired health conditions.A common need expressed by parents and CSHCN is to simplify and accelerate the process to establish services that support children's educational and healthcare needs.

18.
J Biophotonics ; : e202400052, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952197

ABSTRACT

A Mueller matrix polarimetry system at 532 nm wavelength is developed for noninvasive glucose sensing in turbid media such as human's fingertip. The system extracts mean absorbance and anisotropic properties, demonstrated numerically and experimentally with phantom glucose samples. It is found that mean absorbance ( A e $$ {A}_e $$ ), depolarization index (Δ), and linear dichroism (LD) show linear variation with glucose concentration 100-500 mg/dL. In addition, LightTools simulations indicate proportional scaling of scattering effects with A e $$ {A}_e $$ , Δ, and LD. Real-world tests on fingertip show a strong correlation between these properties and blood glucose levels with a mean absolute relative deviation (MARD) of 12.56% and a correlation coefficient (R2) of 0.875 in prediction by a neural network (NN) model, highlighting the advantages of Mueller matrix in extracting more parameters related to blood glucose.

19.
Precis Clin Med ; 7(2): pbae013, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946731

ABSTRACT

Background: Myeloid differentiation factor 88 (MyD88) is the core adaptor for Toll-like receptors defending against microbial invasion and initiating a downstream immune response during microbiota-host interaction. However, the role of MyD88 in the pathogenesis of inflammatory bowel disease is controversial. This study aims to investigate the impact of MyD88 on intestinal inflammation and the underlying mechanism. Methods: MyD88 knockout (MyD88-/-) mice and the MyD88 inhibitor (TJ-M2010-5) were used to investigate the impact of MyD88 on acute dextran sodium sulfate (DSS)-induced colitis. Disease activity index, colon length, histological score, and inflammatory cytokines were examined to evaluate the severity of colitis. RNA transcriptome analysis and 16S rDNA sequencing were used to detect the potential mechanism. Results: In an acute DSS-colitis model, the severity of colitis was not alleviated in MyD88-/- mice and TJ-M2010-5-treated mice, despite significantly lower levels of NF-κB activation being exhibited compared to control mice. Meanwhile, 16S rDNA sequencing and RNA transcriptome analysis revealed a higher abundance of intestinal Proteobacteria and an up-regulation of the nucleotide oligomerization domain-like receptors (NLRs) signaling pathway in colitis mice following MyD88 suppression. Further blockade of the NLRs signaling pathway or elimination of gut microbiota with broad-spectrum antibiotics in DSS-induced colitis mice treated with TJ-M2010-5 ameliorated the disease severity, which was not improved solely by MyD88 inhibition. After treatment with broad-spectrum antibiotics, downregulation of the NLR signaling pathway was observed. Conclusion: Our study suggests that the suppression of MyD88 might be associated with unfavorable changes in the composition of gut microbiota, leading to NLR-mediated immune activation and intestinal inflammation.

20.
iScience ; 27(6): 110033, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947531

ABSTRACT

Ischemic stroke can cause depolarized brain waves, termed peri-infarct depolarization (PID). Here, we evaluated whether topiramate, a neuroprotective drug used to treat epilepsy and alleviate migraine, has the potential to reduce PID. We employed a rat model of photothrombotic ischemia that can reliably and reproducibly induce PID and developed a combined electrocorticography-laser speckle contrast imaging (ECoG-LSCI) platform to monitor neuronal activity and cerebral blood flow (CBF) simultaneously. Topiramate administration after photothrombotic ischemia did not rescue CBF but significantly restored somatosensory evoked potentials in the forelimb area of the primary somatosensory cortex. Moreover, infarct volume was investigated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Mechanistically, the levels of inflammatory markers, such as ED1 (CD68), Iba-1, and GFAP, decreased significantly after topiramate administration, as did BDNF expression, while the expression of NeuN and Bcl-2/Bax increased, which is indicative of reduced inflammation and improved neuroprotection.

SELECTION OF CITATIONS
SEARCH DETAIL
...