Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
J Med Food ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717115

ABSTRACT

Aibika (Abelmoschus manihot (L.) Medic) is a garden vegetable whose flower has been shown to have various bioactivities. This study investigated the protective effect of aibika flower flavonoid extract (AFF) on ethanol-induced gastric injury in mice. The experimental results showed that pre-feeding 125 and 250 mg AFF/kg BW for 1 week significantly reduced the gastric injury area in the negative control group from 19.2% to 6.7% and 0.6%, respectively. The results of the pathological sections staining also showed that AFF had a protective ability against alcohol-induced injury of gastric tissue and liver tissue. When the mice were exposed to high concentrations of ethanol, AFF pretreatment significantly upregulated the expression of antioxidant enzymes. The pretreatment also promoted the production of the intracellular antioxidant, reduced glutathione, in both gastric tissue and serum. On the contrary, AFF delayed the lipid peroxidation process, which, in turn, reduced the damage to the gastric mucosa. When acute inflammation was induced by ethanol stimulation, AFF significantly downregulated the proinflammatory cytokines and mediators such as TNF-α, IL-1ß, IL-6, NF-κB, COX-2, and iNOS. Furthermore, AFF pretreatment greatly promoted the production of healing factors, such as matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9, in the gastric tissue. In addition, AFF significantly reduced gastric cell apoptosis induced by ethanol stimulation. These results demonstrate that AFF has a good protective effect on alcohol-induced gastric ulcer and has the potential to be used in gastrointestinal health care.

2.
BMC Med Imaging ; 24(1): 108, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745134

ABSTRACT

BACKGROUND: The purpose of this research is to study the sonographic and clinicopathologic characteristics that associate with axillary lymph node metastasis (ALNM) for pure mucinous carcinoma of breast (PMBC). METHODS: A total of 176 patients diagnosed as PMBC after surgery were included. According to the status of axillary lymph nodes, all patients were classified into ALNM group (n = 15) and non-ALNM group (n = 161). The clinical factors (patient age, tumor size, location), molecular biomarkers (ER, PR, HER2 and Ki-67) and sonographic features (shape, orientation, margin, echo pattern, posterior acoustic pattern and vascularity) between two groups were analyzed to unclose the clinicopathologic and ultrasonographic characteristics in PMBC with ALNM. RESULTS: The incidence of axillary lymph node metastasis was 8.5% in this study. Tumors located in the outer side of the breast (upper outer quadrant and lower outer quadrant) were more likely to have lymphatic metastasis, and the difference between the two group was significantly (86.7% vs. 60.3%, P = 0.043). ALNM not associated with age (P = 0.437). Although tumor size not associated with ALNM(P = 0.418), the tumor size in ALNM group (32.3 ± 32.7 mm) was bigger than non-ALNM group (25.2 ± 12.8 mm). All the tumors expressed progesterone receptor (PR) positively, and 90% of all expressed estrogen receptor (ER) positively, human epidermal growth factor receptor 2 (HER2) were positive in two cases of non-ALNM group. Ki-67 high expression was observed in 36 tumors in our study (20.5%), and it was higher in ALNM group than non-ALNM group (33.3% vs. 19.3%), but the difference wasn't significantly (P = 0.338). CONCLUSIONS: Tumor location is a significant factor for ALNM in PMBC. Outer side location is more easily for ALNM. With the bigger size and/or Ki-67 higher expression status, the lymphatic metastasis seems more likely to present.


Subject(s)
Adenocarcinoma, Mucinous , Axilla , Breast Neoplasms , Lymph Nodes , Lymphatic Metastasis , Humans , Female , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Adult , Aged , Adenocarcinoma, Mucinous/diagnostic imaging , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/metabolism , Adenocarcinoma, Mucinous/secondary , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Ultrasonography/methods , Biomarkers, Tumor/metabolism
3.
Eur J Pharmacol ; 967: 176377, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38346469

ABSTRACT

Poly (ADP-ribose) polymerase-1 (PARP-1) activity significantly increases during cerebral ischemia/reperfusion. PARP-1 is an NAD+-consumption enzyme. PARP-1 hyperactivity causes intracellular NAD+ deficiency and bioenergetic collapse, contributing to neuronal death. Besides, the powerful trigger of PARP-1 causes the catalyzation of poly (ADP-ribosyl)ation (PARylation), a posttranslational modification of proteins. Here, we found that PARP-1 was activated in the ischemic brain tissue during middle-cerebral-artery occlusion and reperfusion (MCAO/R) for 24 h, and PAR accumulated in the neurons in mice. Using immunoprecipitation, Western blotting, liquid chromatography-mass spectrometry, and 3D-modeling analysis, we revealed that the activation of PARP-1 caused PARylation of hexokinase-1 and lactate dehydrogenase-B, which, therefore, caused the inhibition of these enzyme activities and the resulting cell energy metabolism collapse. PARP-1 inhibition significantly reversed the activity of hexokinase and lactate dehydrogenase, decreased infarct volume, and improved neuronal deficiency. PARP-1 inhibitor combined with pyruvate further alleviated MCAO/R-induced ischemic brain injury in mice. As such, we conclude that PARP-1 inhibitor alleviates neuronal death partly by inhibiting the PARylation of metabolic-related enzymes and reversing metabolism reprogramming during cerebral ischemia/reperfusion injury in mice. PARP-1 inhibitor combined with pyruvate might be a promising therapeutic approach against brain ischemia/reperfusion injury.


Subject(s)
Brain Ischemia , Reperfusion Injury , Mice , Animals , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Poly ADP Ribosylation , Hexokinase/metabolism , NAD/metabolism , Reperfusion Injury/drug therapy , Brain Ischemia/drug therapy , Pyruvates , Lactate Dehydrogenases/metabolism
4.
Nutrition ; 118: 112259, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016253

ABSTRACT

OBJECTIVES: This study investigated the effects of regular nutrition consultations on reducing risk factors, including body mass index, body composition, blood pressure, blood lipid profile, blood glucose-related markers, and inflammatory factors for cardiovascular diseases. METHODS: Data were collected from participants (n = 129) who completed eight dietary consultations and were divided into two groups according to the regularity of the consultations: an irregular group (with irregular consultation intervals; n = 39) and a regular group (accepted consultation once every 3 wk; n = 90). RESULTS: Compared with the irregular group, the regular group had more significant reductions in cardiovascular disease risk factors, such as body mass index, body fat, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and insulin levels. Moreover, participants with a body mass index ≥ 27 kg/m2 presented significantly obvious improvements in cardiovascular risk factors, such as body weight; body mass index; visceral fat weight; and triglyceride, total cholesterol, low-density lipoprotein cholesterol, glycated hemoglobin, and insulin levels. CONCLUSION: There is a proven benefit to regular nutrition consultation for adults with risk factors of cardiovascular diseases, particularly those who are obese.


Subject(s)
Cardiovascular Diseases , Insulins , Adult , Humans , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Risk Factors , Blood Glucose , Triglycerides , Body Mass Index , Cholesterol, LDL , Referral and Consultation
5.
Nutrition ; 117: 112230, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897986

ABSTRACT

OBJECTIVES: Among diet-induced obesity animal models, the cafeteria diet, which contains human junk food and processed foods, is a popular experimental animal diets in Western countries. Consumption of a cafeteria diet can lead to the development of obesity and non-alcoholic liver disease in as soon as 2 mo, which more accurately reflects human eating patterns. The aim of this study was to establish a Taiwanese cafeteria diet and compare it with a traditional lard-based, 60% high-fat diet in a 12-wk animal model. METHODS: Six-wk-old male Wistar rats were assigned to the following three groups: control diet (C; LabDiet 5001); high-fat diet (HFD; 60% HFD); and the Taiwanese cafeteria diet (CAF). RESULTS: At the end of the study, weight gain and steatosis were observed in the HF and CAF groups. Compared with the HFD group, rats in the CAF group showed significantly higher plasma triacylglycerol concentrations and insulin resistance, which may have been correlated with increased inflammatory responses. Significantly lower hepatic sterol regulatory element-binding protein-1c and insulin receptor substrate-1 protein expressions were observed in the CAF group compared with the HFD group. Additionally, disruption of the microbiotic composition followed by increased obesity-related bacteria was observed in the CAF group. CONCLUSIONS: The present study confirmed that the Taiwanese cafeteria diet-induced rat model provided a potential platform for investigating obesity-related diseases.


Subject(s)
Metabolic Diseases , Obesity , Humans , Rats , Male , Animals , Rats, Wistar , Obesity/etiology , Obesity/metabolism , Diet , Weight Gain , Diet, High-Fat/adverse effects
6.
JAMA Netw Open ; 6(12): e2350367, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38150258

ABSTRACT

This cross-sectional study analyzes the accuracy of nutrition information from artificial intelligence (AI) in comparison with a nutritionist.


Subject(s)
Artificial Intelligence , Nutritional Sciences , Nutritional Sciences/standards
7.
Heliyon ; 9(10): e20451, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37817999

ABSTRACT

Estrogen deficiency increases the secretion of inflammatory mediators and can lead to obesity. Consequently, estrogen deficiency can cause metabolic syndrome, particularly insulin resistance during menopause. Both fish oil and perilla oil contain n-3 fatty acids, which may regulate several inflammatory cytokines. Additionally, adjusting the dietary n-3:n-6 fatty-acid ratio to 1:2 may help treat or prevent chronic diseases. Therefore, we investigated the effect of anti-inflammatory and insulin-signaling pathways, not solely in relation to the (n-3:n-6 fatty-acid ratio at 1:2), but also considering the origin of n-3 fatty acids found in fish oil and perilla oil, in a mouse model of estrogen deficiency induced by ovariectomy and obesity induced by a high-fat diet (HFD). Female C57BL/6J mice were divided into five groups: sham mice on a normal diet; ovariectomized (OVX) mice on a normal diet (OC); OVX mice on a HFD plus lard oil (OL), fish oil (OF), or perilla oil (OP). The dietary n-3:n-6 ratio in the OF and OP groups was adjusted to 1:2. The results showed OF group exhibited significantly lower abdominal adipose tissue weight, fewer liver lipid droplets, and smaller uterine adipocytes, compared with the OL group. Compared with the OL group, the OF and OP groups exhibited higher oral glucose tolerance and lower serum alanine aminotransferase activity, triacylglycerol levels, and total cholesterol levels. Hepatic JAK2, STAT3, and SOCS3 mRNA expression and p-NF-κB p65 and IL-6 levels were significantly lower in the OF and OP groups than in the OL group. Only the OF group exhibited an increase in PI3K and Akt mRNA expression, decrease in GLUT2 mRNA expression, and considerable elevation of p-Akt. Both fish and perilla oil reduced inflammatory signaling markers. However, only fish oil improved insulin signaling (PI3K, Akt, and GLUT2). Our data suggest that fish oil can alleviate insulin signaling through activating the PI3K-Akt-GLUT2 cascade signaling pathway.

8.
World J Clin Cases ; 11(24): 5780-5788, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37727723

ABSTRACT

BACKGROUND: We present a case of focal lymphoblastic transformation to erythroid leukemia following acute myeloblastic transformation in a patient with chronic myelogenous leukemia (CML) and discuss its mechanism of occurrence and development. CASE SUMMARY: The presence of the Philadelphia (Ph) chromosome was identified through karyotype analysis, while the BCR-ABL fusion gene was detected using quantitative real-time polymerase chain reaction of the peripheral blood sample. Fluorescence in situ hybridization was used to detect the expression of the BCR-ABL gene in the lymphoma. Antigen expression and gene mutations in the primitive cells were detected by flow cytometry. The analysis confirmed the presence of CML along with focal lymphoblastic transformation to erythroid leukemia. Additionally, the patient was found to have secondary erythroid leukemia, along with multiple new gene mutations and abnormalities in complex karyotypes of chromosomes. CONCLUSION: Our findings suggest a possible molecular basis for the focal lymphoblastic transformation secondary to myeloblastic transformation in patients with CML.

9.
Macromol Rapid Commun ; 44(24): e2300382, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703910

ABSTRACT

Organic-inorganic hybrid perovskites have garnered significant attention in optoelectronics owing to their outstanding tunable optical characteristics. Controlled growth of perovskite nanocrystals from solutions is key for controlling the emission intensity and photoluminescence lifetime of perovskites. In particular, most studies have focused on controlling the crystallization of perovskite through chemical treatment using chelating ligands or physical treatment via antisolvent diffusion, and there exists a trade-off between the photoluminescence intensity and lifetime of perovskites. Herein, a selective solvent vapor-assisted crystallization with the aid of a functional polymer, which nanoscale perovskite crystals are grown andante from precursor solution, is presented for tuning the crystallization and optical properties of a common halide perovskite, methylammonium lead bromide (MAPbBr3 ). The proposed method here produces perovskite nanocrystals in the range of 200-300 nm. The spin-coated thin film formed from the perovskite solution exhibits strong green photoluminescence with a long lifetime. The effects of the functional group and polymer dosage on the crystallization of MAPbBr3 are systematically investigated, and the crystallization mechanism is explained based on a modified LaMer model. This study provides an advanced solution process for precisely controlling perovskite crystallization to enhance their optical properties for next-generation optoelectronic devices.


Subject(s)
Calcium Compounds , Gases , Crystallization , Diffusion
10.
Curr Res Food Sci ; 7: 100546, 2023.
Article in English | MEDLINE | ID: mdl-37483276

ABSTRACT

Caulerpa lentillifera (CL), also called sea grape, is a type of edible green alga which was reported to have antioxidative and immunomodulatory potential. This study aimed to investigate the hepatoprotective effects of CL in a rat model of chronic ethanol exposure. Wistar rats were assigned to four groups and supplied with an isocaloric control liquid diet (group C), an ethanol liquid diet (group E), a control liquid diet supplemented with 5% CL (group CC), or an ethanol liquid diet supplemented with 5% CL (group EC) for a 12-week experimental period. Ethanol feeding induced steatosis, inflammation, and changes in the gut microbiota by the end of the study, whereas CL supplementation significantly improved liver injuries and decreased circulatory endotoxin levels. Moreover, we also found that CL reversed ethanol-induced elevation of hepatic toll-like receptor 4 (TLR4), MyD88 protein expression, the phosphorylated-nuclear factor (NF)-κB-to-NF-κB ratio, and proinflammatory cytokine concentrations. Additionally, CL also increased the abundance of Akkermansia and tight junction proteins and diminished the Firmicutes-to-Bacteroidetes ratio. Dietary CL inhibited the progression of alcoholic liver disease, and some of the possible mechanisms may be strengthening the intestinal barrier function, alleviating dysbiosis, and modulating the TLR4 pathway.

11.
ACS Appl Mater Interfaces ; 15(28): 34311-34320, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37410886

ABSTRACT

As a result of inaccurate biosensing and difficult synergetic loading, it is challenging to further impel DNA amplifiers to perform therapeutic application. Herein, we introduce some innovative solutions. First, a smart light-driven biosensing concept based on embedding nucleic acid modules with a simple photocleavage-linker is proposed. In this system, the target identification component is exposed on irradiation with ultraviolet light, thus avoiding an always-on biosensing response during biological delivery. Further, in addition to providing controlled spatiotemporal behavior and precise biosensing information, a metal-organic framework is used for the synergetic loading of doxorubicin in the internal pores, whereafter a rigid DNA tetrahedron-sustained exonuclease III-powered biosensing system is attached to prevent drug leakage and enhance resistance to enzymatic degradation. By selecting a next-generation breast cancer correlative noncoding microRNA biomarker (miRNA-21) as a model low-abundance analyte, a highly sensitive in vitro detection ability even allowing to distinguish single-base mismatching is demonstrated. Moreover, the all-in-one DNA amplifier shows excellent bioimaging competence and good chemotherapy efficacy in live biosystems. These findings will drive research into the use of DNA amplifiers in diagnosis and therapy integrated fields.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , MicroRNAs , Nucleic Acids , Biosensing Techniques/methods , DNA/genetics , MicroRNAs/genetics
12.
Front Neurorobot ; 17: 1182375, 2023.
Article in English | MEDLINE | ID: mdl-37342390

ABSTRACT

Face morphing attacks have become increasingly complex, and existing methods exhibit certain limitations in capturing fine-grained texture and detail changes. To overcome these limitation, in this study, a detection method based on high-frequency features and progressive enhancement learning was proposed. Specifically, in this method, first, high-frequency information are extracted from the three color channels of the image to accurately capture the details and texture changes. Next, a progressive enhancement learning framework was designed to fuse high-frequency information with RGB information. This framework includes self-enhancement and interactive-enhancement modules that progressively enhance features to capture subtle morphing traces. Experiments conducted on the standard database and compared with nine classical technologies revealed that the proposed approach achieved excellent performance.

13.
J Orthop Surg Res ; 18(1): 407, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37271815

ABSTRACT

PURPOSE: 3D printing techniques guide precision medicine and show great development potential in clinical applications. The purpose of this study was to compare the clinical outcomes of 3D-printed navigation templates versus free-hand in tension band wiring (TBW) procedures for olecranon fractures. METHODS: Patients who underwent TBW due to Mayo type II olecranon fractures between January 2019 and December 2021 in our hospital were prospectively enrolled in the study. The patients were divided into the 3D printed navigation template guiding TBW group (3D printed group) and the free-hand TBW group (free-hand group). The primary endpoint of this study was the success rate of the bicortical placement of Kirschner wires (K-wires). Times of intraoperative fluoroscopy, operation times, complications, VAS scores, and Mayo Elbow Performance Scores (MEPS) were analyzed as the secondary outcomes measure. RESULTS: The success rate of the bicortical placement of K-wires was 85.7% in the 3D Printed group was significantly higher than the free-hand group (60%). There were fewer times of intraoperative fluoroscopy in the 3D Printed group (1.43 ± 0.51) than that in the free-hand group (2.60 ± 1.00) with statistical significance (P < 0.05). At the date of the last follow-up, four patients suffer from pain and skin injury at the K-wires insertion site in the 3D Printed group and 14 patients in the free-hand group, a significant difference between the two groups (P < 0.05). No statistically significant differences were found in operation time, VAS scores, and MEPS between the two groups. CONCLUSIONS: The individualized 3D-printed navigation template-assisted TBW demonstrated good accuracy and resulted in reduced times of intraoperative fluoroscopy and complication compared to the free-hand TBW for olecranon fractures.


Subject(s)
Fractures, Bone , Olecranon Fracture , Olecranon Process , Ulna Fractures , Humans , Retrospective Studies , Ulna Fractures/diagnostic imaging , Ulna Fractures/surgery , Fracture Fixation, Internal/methods , Fractures, Bone/surgery , Olecranon Process/surgery , Olecranon Process/injuries , Bone Wires
14.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240190

ABSTRACT

This study investigated the beneficial effects of epidermal growth factor (EGF) on muscle loss in rats with chronic ethanol feeding. Six-week-old male Wistar rats were fed either a control liquid diet without EGF (C group, n = 12) or EGF (EGF-C group, n = 18) for two weeks. From the 3rd to 8th week, the C group was divided into two groups. One was continually fed with a control liquid diet (C group), and the other one was fed with an ethanol-containing liquid diet (E group); moreover, the EGF-C group was divided into three groups, such as the AEGF-C (continually fed with the same diet), PEGF-E (fed with the ethanol-containing liquid diet without EGF), and AEGF-E (fed with the ethanol-containing liquid diet with EGF). As a result, the E group had significantly higher plasma ALT and AST, endotoxin, ammonia, and interleukin 1b (IL-1b) levels, along with liver injuries, such as hepatic fatty changes and inflammatory cell infiltration. However, plasma endotoxin and IL-1b levels were significantly decreased in the PEGF-E and AEGF-E groups. In addition, the protein level of muscular myostatin and the mRNA levels of forkhead box transcription factors (FOXO), muscle RING-finger protein-1 (MURF-1) and atorgin-1 was increased considerably in the E group but inhibited in the PEGF-E and AEGF-E groups. According to the principal coordinate analysis findings, the gut microbiota composition differed between the control and ethanol liquid diet groups. In conclusion, although there was no noticeable improvement in muscle loss, EGF supplementation inhibited muscular protein degradation in rats fed with an ethanol-containing liquid diet for six weeks. The mechanisms might be related to endotoxin translocation inhibition, microbiota composition alteration as well as the amelioration of liver injury. However, the reproducibility of the results must be confirmed in future studies.


Subject(s)
Epidermal Growth Factor , Liver Diseases, Alcoholic , Rats , Male , Animals , Epidermal Growth Factor/metabolism , Rats, Wistar , Reproducibility of Results , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Ethanol/pharmacology , Endotoxins/metabolism , Muscles
15.
Bioengineering (Basel) ; 9(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36290494

ABSTRACT

The purpose of this study was to clarify the role of saturated fats from cocoa butter (plant source) compared with lard (animal source) on alcoholic liver damage in rats. Male Wistar rats were fed either a control diet (C) or an ethanol diet (E), and the dietary fats (corn oil, olive oil, and safflower oil) of these two diets were further replaced by lard (CL, EL) or cocoa butter (CC, EC). After 8-week feeding, plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, hepatic triglyceride (TG) levels, plasma intercellular adhesion molecular (ICAM)-1 levels, hepatic cytochrome P450 2E1 (CYP2E1) protein expression, and hepatic interleukin (IL)-1ß significantly increased in the E group compared to the C group. In addition, hepatic histopathological scores of fatty changes, inflammatory cell infiltration, and degeneration and necrosis in the E group were significantly higher compared to those in the C group. However, fatty changes were significantly inhibited only in the EC group as well as hepatic inflammatory cell infiltration, degeneration, and necrosis being significantly lower in the EL and EC groups. Plasma ICAM-1 and hepatic tumor necrosis factor (TNF)-α, IL-1ß, IL-6, and IL-10 levels were significantly lower in the EL and EC groups than those in the E group. Moreover, a correlation analysis showed that hepatic histopathological scores of degeneration and necrosis were significantly positively correlated with erythrocytic oleic acid (C18:1) and were negatively correlated with linoleic acid (C18:2). In conclusion, cocoa butter protected the liver against lipid accumulation and inflammation in rats chronically fed ethanol.

16.
Bioengineering (Basel) ; 9(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36290563

ABSTRACT

The progression of neurodegenerative diseases is associated with oxidative stress and inflammatory responses. Abelmoschus manihot L. flower (AMf) has been shown to possess excellent antioxidant and anti-inflammatory activities. This study investigated the protective effect of ethanolic extract (AME), water extract (AMW) and supercritical extract (AMS) of AMf on PC12 neuronal cells under hydrogen peroxide (H2O2) stimulation. This study also explored the molecular mechanism underlying the protective effect of AME, which was the best among the three extracts. The experimental results showed that even at a concentration of 500 µg/mL, neither AME nor AMW showed toxic effects on PC12 cells, while AMS caused about 10% cell death. AME has the most protective effect on apoptosis of PC12 cells stimulated with 0.5 mM H2O2. This is evident by the finding when PC12 cells were treated with 500 µg/mL AME; the viability was restored from 58.7% to 80.6% in the Treatment mode (p < 0.001) and from 59.1% to 98.1% in the Prevention mode (p < 0.001). Under the stimulation of H2O2, AME significantly up-regulated the expression of antioxidant enzymes, such as catalase, glutathione peroxidase and superoxide dismutase; promoted the production of the intracellular antioxidant; reduced glutathione; and reduced ROS generation in PC12 cells. When the acute inflammation was induced under the H2O2 stimulation, AME significantly down-regulated the pro-inflammatory cytokines and mediators (e.g., TNF-α, IL-1ß, IL-6, COX-2 and iNOS). AME pretreatment could also greatly promote the production of nucleotide excision repair (NER)-related proteins, which were down-regulated by H2O2. This finding indicates that AME could repair DNA damage caused by oxidative stress. Results from this study demonstrate that AME has the potential to delay the onset and progression of oxidative stress-induced neurodegenerative diseases.

17.
Mol Med ; 28(1): 112, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36100884

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as regulators of human malignancies, including ovarian cancer (OC). LncRNA KCNQ1OT1 could promote OC progression, and EIF2B5 was associated with development of several tumors. This project was aimed to explore the role of lncRNA KCNQ1OT1 in OC development, as well as the involving action mechanism. METHODS: Reverse transcription quantitative polymerase chain reaction (RT-qPCR) or Western blotting was employed to determine the expression levels of KCNQ1OT1 and EIF2B5. OC cell proliferation was evaluated by MTT and colony formation assays, and wound healing and Transwell assays were implemented to monitor cell migration and invasion, respectively. The methylation status of EIF2B5 promoter was examined by MS-PCR, to clarify whether the expression of EIF2B5 was decreased. The binding activity of KCNQ1OT1 to methyltransferases DNMT1, DNMT3A and DNMT3B was determined by dual luciferase reporter assay or RIP assay, to explore the potential of KCNQ1OT1 alters the expression of its downstream gene. ChIP assay was carried out to verify the combination between EIF2B5 promoter and above three methyltransferases. RESULTS: Expression of lncRNA KCNQ1OT1 was increased in OC tissues and cells. EIF2B5 expression was downregulated in OC, which was inversely correlated with KCNQ1OT1. Knockdown of KCNQ1OT1 inhibited OC cell proliferation and metastasis. KCNQ1OT1 could downregulate EIF2B5 expression by recruiting DNA methyltransferases into EIF2B5 promoter. Furthermore, interference of EIF2B5 expression rescued KCNQ1OT1 depletion-induced inhibitory impact on OC cell proliferation and metastasis. CONCLUSION: Our findings evidenced that lncRNA KCNQ1OT1 aggravated ovarian cancer metastasis by decreasing EIF2B5 expression level, and provided a novel therapeutic strategy for OC.


Subject(s)
MicroRNAs , Ovarian Neoplasms , RNA, Long Noncoding , Carcinoma, Ovarian Epithelial , Eukaryotic Initiation Factor-2B/metabolism , Female , Humans , Methylation , Methyltransferases/metabolism , MicroRNAs/genetics , Neoplastic Processes , Ovarian Neoplasms/pathology , Potassium Channels, Voltage-Gated/genetics , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
18.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35890125

ABSTRACT

Previous studies have demonstrated that Siegesbeckia orientalis (SO) has a suppressive effect on the growth and migration of endometrial and cervical cancer cells. The present study examined the effect of SO ethanolic extract (SOE) on the proliferation and migration of hepatocellular carcinoma (HCC) and examined the effects of SOE on non-cancerous cells using HaCaT keratinocytes as a model. The SOE effectively inhibited the proliferation of Hepa1-6 (IC50 = 282.4 µg/mL) and HepG2 (IC50 = 344.3 µg/mL) hepatoma cells, whereas it has less cytotoxic effect on HaCaT cells (IC50 = 892.4 µg/mL). The SOE treatment increased the generation of ROS in HCC, but decreased the expression of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. In contrast, it reduced intracellular ROS formation and upregulated the expression of the related antioxidant enzymes in the H2O2-stimulated HaCaT cells. The SOE intervention also down-regulated the anti-apoptotic Bcl-2 and the migration-related proteins including matrix metalloproteinases (MMPs) and ß-catenin in the HCC, suggesting that SOE could promote HCC apoptosis and inhibit HCC migration. On the contrary, it reduced apoptosis and promoted the migration of the keratinocytes. Additionally, the SOE treatment significantly up-regulated the pro-inflammatory cytokines, including TNF-α, IL-6 and IL-1ß, in Hepa1-6 and HepG2 cells. Conversely, it significantly decreased the expression of these cytokines in the H2O2-induced HaCaT cells. These findings indicated that SOE treatment can delay the progression of HCC by increasing oxidative stress, promoting inflammatory response, inducing cancer cell apoptosis and inhibiting their migration. It also has protective effects from pro-oxidant H2O2 in non-cancerous cells. Therefore, SOE may provide a potential treatment for liver cancer.

19.
Int J Mol Sci ; 23(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35563076

ABSTRACT

We previously demonstrated that acacetin reduces adipogenesis in adipocytes, and decreases lipid accumulation in visceral adipocyte tissue. Here we investigated whether acacetin regulated the mechanisms of lipogenesis and inflammation in non-alcoholic fatty liver disease (NAFLD) in obese mice. Male C57BL/6 mice were fed a high-fat diet (HFD), and then administered acacetin by intraperitoneal injection. Acacetin reduced body weight and liver weight in obese mice. Acacetin-treated obese mice exhibited decreased lipid accumulation, increased glycogen accumulation, and improved hepatocyte steatosis. Acacetin regulated triglycerides and total cholesterol in the liver and serum. Acacetin decreased low-density lipoprotein and leptin concentrations, but increased high-density lipoprotein and adiponectin levels in obese mice. Acacetin effectively weakened the gene expressions of transcription factors related to lipogenesis, and promoted the expressions of genes related to lipolysis and fatty acid ß-oxidation in liver. Acacetin also reduced expressions of inflammation-related cytokines in the serum and liver. Oleic acid induced lipid accumulation in murine FL83B hepatocytes, and the effects of acacetin treatment indicated that acacetin may regulate lipid metabolism through the AMPK pathway. Acacetin may protect against hepatic steatosis by modulating inflammation and AMPK expression.


Subject(s)
Flavones , Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Diet, High-Fat/adverse effects , Flavones/pharmacology , Flavones/therapeutic use , Inflammation/metabolism , Lipid Metabolism , Lipogenesis/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Triglycerides/metabolism
20.
Anal Chem ; 94(18): 6909-6917, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35481762

ABSTRACT

It is necessary to explore labeling probes with worthy optical properties and a noninvasive fluorescence imaging manner for stable long-term in situ measuring a single suspension cell. In response to these goals, we herein make a breakthrough on two fronts. On one hand, a co-sensitizer-induced efficient 808 nm near-infrared light-excited luminescence-confined upconversion nanoparticle with a low thermal effect is fabricated by employing a layer-by-layer seed growing approach to develop a sandwich structure, under which the luminescence domain is vastly restricted into an extremely thin inner shell (∼ 2.77 nm) to finally bring about a high-efficiency luminescent resonance energy transfer (LRET) sensing behavior. On the other hand, a self-made optical tweezers integrated upconversion luminescence confocal scanning instrument is applied to enhance the imaging accuracy, after which the liquid viscous force is sufficiently overcome by the resulting single beam gradient force and the analyzed suspension cell is always immobilized to the focal plane to ensure a constant luminescence excitation condition. By making use of a metal ion-dependent DNAzyme and a hairpin DNA strand to design a corresponding LRET sensing system, our nanoprobe shows satisfactory assay performance for two model biomolecules (Ca2+ and TK1 messenger RNA). Following the optical trapping-assisted imaging, this exceptional measurement method is capable of effectively monitoring the intracellular target changes in different physiological states, endowing a powerful toolbox for single cell analysis.


Subject(s)
Luminescence , Nanoparticles , Fluorescence Resonance Energy Transfer , Nanoparticles/chemistry , Optical Imaging , Optical Tweezers , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...