Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 49(3): 702-10, 2009 Apr 05.
Article in English | MEDLINE | ID: mdl-19188037

ABSTRACT

Taranabant (MK-0364) is a highly potent and selective cannabinoid-1 receptor (CB-1R) inverse agonist. It is being developed at Merck & Company to treat obesity. The chemical synthesis of MK-0364 drug substance involved the direct coupling of chiral amine and pyridine acid side chains mediated by cyanuric chloride. Four major process impurities were observed and characterized using high performance liquid chromatography (HPLC) coupled with ultraviolet (UV) and electrospray ionization (ESI) mass spectrometry (MS) detectors. The exact mass data was used for structural elucidation which suggests that the impurities are derivatives of cyanuric chloride formed in the coupling step. Owing to the reactive nature of these impurities, an interesting degradation phenomenon was observed during stability testing of MK-0364 drug substance when stored at 40 degrees C/75% RH and 25 degrees C/60% RH conditions. Degradation pathways were proposed to explain the changes observed in the HPLC impurity profile. Forced degradation experiments were also conducted to confirm the degradation pathways and assess the stability of the impurities. Finally, the complete stability data of the bulk drug are reported to support the hypothesis.


Subject(s)
Amides/chemistry , Anti-Obesity Agents/chemistry , Pyridines/chemistry , Receptor, Cannabinoid, CB1/agonists , Triazines/chemistry , Amides/chemical synthesis , Anti-Obesity Agents/chemical synthesis , Chromatography, High Pressure Liquid , Cross-Linking Reagents , Drug Contamination , Drug Stability , Indicators and Reagents , Mass Spectrometry , Pyridines/chemical synthesis , Reproducibility of Results , Spectrophotometry, Ultraviolet
2.
Anal Chem ; 75(3): 605-11, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12585491

ABSTRACT

In this study, we report the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) for the identification and quantitation of two polymorphs of Aprepitant, a substance P antagonist for chemotherapy-induced emesis. Mixtures of the polymorph pair were prepared by weight and ATR-FT-IR spectra of the powdered samples were obtained over the wavelength range of 700-1500 cm(-1). Significant spectral differences between the two polymorphs at 1140 cm(-1) show that ATR-FT-IR can provide definitive identification of the polymorphs. To investigate the feasibility of ATR-FT-IR for quantitation of polymorphic forms of Aprepitant, a calibration plot was constructed with known mixtures of the two polymorphs by plotting the peak ratio of the second derivative of absorbance spectra against the weight percent of form II in the polymorphic mixture. Using this novel approach, 3 wt % of one crystal form could be detected in mixtures of the two polymorphs. The accuracy of ATR-FT-IR in determining polymorph purity of the drug substance was tested by comparing the results with those obtained by X-ray powder diffractometry (XRPD). Indeed, polymorphic purity results obtained by ATR-FT-IR were found to be in good agreement with the predictions made by XRPD and compared favorably with actual values in the known mixtures. The present study clearly demonstrates the potential of ATR-FT-IR as a quick, easy, and inexpensive alternative to XRPD for the determination of polymorphic identity and purity of solid drug substances. The technique is ideally suited for polymorph analysis, because it is precise, accurate, and requires minimal sample preparation.


Subject(s)
Morpholines/analysis , Spectroscopy, Fourier Transform Infrared/methods , Substance P/antagonists & inhibitors , Drug Contamination , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...