Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Diabetol ; 23(1): 226, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951808

ABSTRACT

BACKGROUND: The atherogenic index of plasma (AIP) is closely associated with the onset of diabetes, with obesity being a significant risk factor for type 2 diabetes mellitus (T2DM). However, the association between the AIP and T2DM in overweight and obese populations has been infrequently studied. Therefore, this study aimed to explore this association in overweight and obese individuals with T2DM. METHODS: This cross-sectional analysis utilized data from 40,633 participants with a body mass index (BMI) ≥ 24 kg/m2 who were screened from January 2018 to December 2023 at Henan Provincial People's Hospital. Participants were categorized into groups of overweight and obese individuals with and without diabetes according to the T2DM criteria. The AIP, our dependent variable, was calculated using the formula log10 [(TG mol/L)/HDL-C (mol/L)]. We investigated the association between the AIP and T2DM in overweight and obese individuals using multivariate logistic regression, subgroup analysis, generalized additive models, smoothed curve fitting, and threshold effect analysis. Additionally, mediation analysis evaluated the role of inflammatory cells in AIP-related T2DM. RESULTS: Overweight and obese patients with T2DM exhibited higher AIP levels than those without diabetes. After adjusting for confounders, our results indicated a significant association between the AIP and the risk of T2DM in overweight and obese individuals (odds ratio (OR) = 5.17, 95% confidence interval (CI) 4.69-5.69). Notably, participants with a high baseline AIP (Q4 group) had a significantly greater risk of T2DM than those in the Q1 group, with an OR of 3.18 (95% CI 2.94-3.45). Subgroup analysis revealed that the association between the AIP and T2DM decreased with increasing age (interaction P < 0.001). In overweight and obese populations, the association between AIP and T2DM risk displayed a J-shaped nonlinear pattern, with AIP > - 0.07 indicating a significant increase in T2DM risk. Various inflammatory cells, including neutrophils, leukocytes, and monocytes, mediated 4.66%, 4.16%, and 1.93% of the associations, respectively. CONCLUSION: In overweight and obese individuals, the AIP was independently associated with T2DM, exhibiting a nonlinear association. Additionally, the association between the AIP and T2DM decreased with advancing age. Multiple types of inflammatory cells mediate this association.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Obesity , Adult , Aged , Female , Humans , Male , Middle Aged , Atherosclerosis/epidemiology , Atherosclerosis/blood , Atherosclerosis/diagnosis , Biomarkers/blood , Body Mass Index , China/epidemiology , Cholesterol, HDL/blood , Cross-Sectional Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , East Asian People , Obesity/diagnosis , Obesity/blood , Obesity/epidemiology , Overweight/epidemiology , Overweight/blood , Overweight/diagnosis , Overweight/complications , Prognosis , Risk Assessment , Risk Factors , Triglycerides/blood
2.
Nanoscale ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910550

ABSTRACT

The present study employed a solvothermal method utilizing triphenylphosphine and nickel acetylacetonate as precursors for phosphide preparation, followed by analysis and characterization. The Ni-MOF precursor was prepared using benzene diacid, triethylenediamine, and nickel sulfate as raw materials. Ni2P was introduced into the Ni-MOF precursor during its preparation while maintaining the synthesis conditions, allowing for the adsorption of Ni2P nanoparticles during Ni-MOF synthesis to produce Ni2P@MOF composite materials. The materials underwent individual testing for UV, magnetic, and microwave absorption properties. Magnetic testing results demonstrated that the incorporation of Ni2P led to an increase in the saturation magnetization (Ms) of Ni2P@MOFs compared to the Ni-MOF, thereby enhancing its electromagnetic loss capability. Microwave absorption property testing indicated that the Ni2P@MOFs exhibited enhanced dielectric and electromagnetic loss capabilities compared to the Ni-MOF, optimizing impedance matching properties and increasing effective absorption bandwidth compared to pure Ni2P materials.

3.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36282216

ABSTRACT

RNA polymerase I (Pol I) synthesizes about 60% of cellular RNA by transcribing multiple copies of the ribosomal RNA gene (rDNA). The transcriptional activity of Pol I controls the level of ribosome biogenesis and cell growth. However, there is currently a lack of methods for monitoring Pol I activity in real time. Here, we develop LiveArt (live imaging-based analysis of rDNA transcription) to visualize and quantify the spatiotemporal dynamics of endogenous ribosomal RNA (rRNA) synthesis. LiveArt reveals mitotic silencing and reactivation of rDNA transcription, as well as the transcriptional kinetics of interphase rDNA. Using LiveArt, we identify SRFBP1 as a potential regulator of rRNA synthesis. We show that rDNA transcription occurs in bursts and can be altered by modulating burst duration and amplitude. Importantly, LiveArt is highly effective in the screening application for anticancer drugs targeting Pol I transcription. These approaches pave the way for a deeper understanding of the mechanisms underlying nucleolar functions.


Subject(s)
RNA Polymerase I , Transcription, Genetic , Humans , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , DNA, Ribosomal/genetics , RNA, Ribosomal/genetics , Cell Nucleolus/genetics , Cell Nucleolus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...