Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124612, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38857548

ABSTRACT

High fructose intake is an important cause of metabolic disease. Due to the increasing prevalence of metabolic diseases worldwide, the development of an accurate and efficient tool for monitoring fructose in food is urgently needed to control the intake of fructose. Herein, a new fluorescent probe NBD-PQ-B with 7-nitrobenz-2-oxa-1, 3-diazole (NBD) as the fluorophore, piperazine (PQ) as the bridging group and phenylboronic acid (B) as the recognition receptor, was synthesized to detect fructose. The fluorescence of NBD-PQ-B increased linearly at 550 nm at an excitation wavelength of 497 nm with increasing fructose concentration from 0.1 to 20 mM. The limit of detection (LOD) of fructose was 40 µM. The pKa values of NBD-PQ-B and its fructose complexes were 4.1 and 10.0, respectively. In addition, NBD-PQ-B bound to fructose in a few seconds. The present technique was applied to determine the fructose content in beverages, honey, and watermelon with satisfactory results. Finally, the system could not only be applied in an aqueous solution with a spectrophotometer, but also be fabricated as a NBD-PQ-B/polyvinyl oxide (PEO) film by electrospinning for on-site food analysis simply with the assistance of a smartphone.

2.
Ecol Evol ; 14(6): e11422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846709

ABSTRACT

Daphnia can avoid predation by sensing fish kairomones and producing inducible defenses by altering the phenotype. In this study, the results showed that the morphological and life-history strategies of two Daphnia species (Daphnia pulex and Daphnia sinensis) exposed to Aristichthys nobilis kairomones. In the presence of fish kairomones, the two Daphnia species exhibited significantly smaller body length at maturity, smaller body length of offspring at the 10th instar, and longer relative tail spine of offspring. Nevertheless, other morphological and life-history traits of the two Daphnia species differed. D. pulex showed a significantly longer relative tail spine length and earlier age at maturity after exposure to fish kairomones. The total offspring number of D. sinensis exposed to fish kairomones was significantly higher than that of the control group, whereas that of D. pulex was significantly lower. These results suggest that the two Daphnia species have different inducible defense strategies (e.g., morphological and life-history traits) during prolonged exposure to A. nobilis kairomones, and their offspring also develop morphological defenses to avoid predation. It will provide reference for further exploring the adaptive evolution of Daphnia morphology and life-history traits in the presence of planktivorous fish.

3.
Nanomicro Lett ; 16(1): 210, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842604

ABSTRACT

Nickel-rich layered oxide LiNixCoyMnzO2 (NCM, x + y + z = 1) is the most promising cathode material for high-energy lithium-ion batteries. However, conventional synthesis methods are limited by the slow heating rate, sluggish reaction dynamics, high energy consumption, and long reaction time. To overcome these challenges, we first employed a high-temperature shock (HTS) strategy for fast synthesis of the NCM, and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time. In the HTS process, ultrafast average reaction rate of phase transition from Ni0.6Co0.2Mn0.2(OH)2 to Li- containing oxides is 66.7 (% s-1), that is, taking only 1.5 s. An ultrahigh heating rate leads to fast reaction kinetics, which induces the rapid phase transition of NCM cathodes. The HTS-synthesized nickel-rich layered oxides perform good cycling performances (94% for NCM523, 94% for NCM622, and 80% for NCM811 after 200 cycles at 4.3 V). These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.

4.
Int J Biol Macromol ; 269(Pt 2): 132089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705331

ABSTRACT

Pro-inflammatory M1 macrophages possess the ability to change the immunosuppressive tumor microenvironment by releasing various inflammatory factors simultaneously, which can effectively inhibit tumor progression and relapse. Promoting macrophage polarization towards M1 may be an effective way to treat Melanoma. However, the risk of cytokine storm caused by the proliferation and excessive activation of M1 macrophages greatly limits it as a biosafety therapeutic strategy in anti-tumor immunotherapy. Therefore, how to engineer natural M1 macrophage to a biocompatible biomaterial that maintains the duration time of tumor suppressive property duration time still remains a huge challenge. To achieve this goal, we developed an injectable macroporous hydrogel (M1LMHA) using natural M1 macrophage lysates and alginate as raw materials. M1LMHA had excellent biocompatibility, adjustable degradation rate and could sustainably release varieties of natural inflammatory factors, such as tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12), etc. M1LMHA could repolarize anti-inflammatory M2 macrophages to M1 macrophages by the synergistic effect of released tiny inflammatory factors via the NF-κB pathway. This study supported that M1LMHA might be an effective and safe tool to activate tumor-associated immune cells, improving the efficiency of anti-tumor immunotherapy.


Subject(s)
Alginates , Hydrogels , Tumor-Associated Macrophages , Alginates/chemistry , Alginates/pharmacology , Mice , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Melanoma/therapy , Melanoma/immunology , Melanoma/drug therapy , Melanoma/pathology , Porosity , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , RAW 264.7 Cells , Cytokines/metabolism , Cell Line, Tumor , Tumor Microenvironment/drug effects
5.
Adv Mater ; : e2405956, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819626

ABSTRACT

Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high-temperature shock technology is employed to controllably introduce the Li-Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li-Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge-sharing octahedra across the ab plane to 4c site of corner-sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first-principles calculations, the unique multiscale coupling structure of Li-Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high-capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high-rate electrodes.

6.
Sci Total Environ ; 939: 173636, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38821278

ABSTRACT

Low-molecular-weight (LMW) organic acids are among the most abundant water-soluble organic compounds, but their gas-particle partitioning mechanism remains unclear. In the present study, LMW organic acids were measured using a URG 9000D Ambient Ion Monitor in suburban Shanghai. The average concentrations of formic acid, acetic acid, oxalic acid, and methanesulfonic acid (MSA) in PM2.5 were 405 ± 116, 413 ± 11, 475 ± 266, and 161 ± 54 ng m-3, respectively. The particle fraction exceeded 30 % for formic acid and acetic acid. Model predictions underestimated the particle-phase monocarboxylic acids (MCAs) from the factor of 102 at the highest RH to 107 at the lowest RH. The average measured intrinsic Henry's law constants (Hmea) for formic acid, acetic acid, oxalic acid, and MSA were 3.8 × 107, 4.5 × 107, 8.7 × 108, and 3.4 × 107 mol L-1 atm-1, respectively, approximately four orders of magnitude higher than their literature-based intrinsic Henry's law constants (Hlit) for MCAs and approximately four orders of magnitude lower than Hlit, MSA. The ratio of Hmea /Hlit for MCAs ranged over three orders of magnitude, depending on relative humidity. The strong deviations at low RHs are attributed to the dominance of absorption by the organic phase. The discrepancy at the highest RH possibly relates to surfactant effects and dimer formation. We used Hmea as a model input for the first time to estimate the phase partitioning of particulate MCAs, finding that >80 % of MCAs resided in the organic phase under dry conditions. We propose parameterizing Hmea as model input to predict the multiphase partitioning of MCAs.

7.
Int J Biol Macromol ; 270(Pt 1): 132289, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735607

ABSTRACT

S-Adenosyl-l-homocysteine hydrolase (SAHH) is a crucial enzyme that governs S-adenosyl methionine (SAM)-dependent methylation reactions within cells and regulates the intracellular concentration of SAH. Legionella pneumophila, the causative pathogen of Legionnaires' disease, encodes Lpg2021, which is the first identified dimeric SAHH in bacteria and is a promising target for drug development. Here, we report the structure of Lpg2021 in its ligand-free state and in complexes with adenine (ADE), adenosine (ADO), and 3-Deazaneplanocin A (DZNep). X-ray crystallography, isothermal titration calorimetry (ITC), and molecular docking were used to elucidate the binding mechanisms of Lpg2021 to its substrates and inhibitors. Virtual screening was performed to identify potential Lpg2021 inhibitors. This study contributes a novel perspective to the understanding of SAHH evolution and establishes a structural framework for designing specific inhibitors targeting pathogenic Legionella pneumophila SAHH.


Subject(s)
Adenosylhomocysteinase , Legionella pneumophila , Molecular Docking Simulation , Legionella pneumophila/enzymology , Substrate Specificity , Adenosylhomocysteinase/metabolism , Adenosylhomocysteinase/antagonists & inhibitors , Adenosylhomocysteinase/chemistry , Crystallography, X-Ray , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/chemistry , Adenine/chemistry , Adenine/metabolism , Adenine/analogs & derivatives , Protein Binding , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , N-Glycosyl Hydrolases
8.
Int Immunopharmacol ; 134: 112247, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759374

ABSTRACT

BACKGROUND: Epilepsy is a chronic disabling disease poorly controlled by available antiseizure medications. Oridonin, a bioactive alkaloid with anti-inflammatory properties and neuroprotective effects, can inhibit the increased excitability of neurons caused by glutamate accumulation at the cellular level. However, whether oridonin affects neuronal excitability and whether it has antiepileptic potential has not been reported in animal models or clinical studies. METHOD: Pentylenetetrazol was injected into mice to create a model of chronic epilepsy. Seizure severity was assessed using the Racine scale, and the duration and latency of seizures were observed. Abnormal neuronal discharge was detected using electroencephalography, and neuronal excitability was assessed using calcium imaging. Damage to hippocampal neurons was evaluated using Hematoxylin-Eosin and Nissl staining. The expression of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and other pyroptosis-related proteins was determined using western blotting and immunofluorescence. A neuronal pyroptosis model was established using the supernatant of BV2 cells treated with lipopolysaccharide and adenosine triphosphate to stimulate hippocampal neurons. RESULTS: Oridonin (1 and 5 mg/kg) reduced neuronal damage, increased the latency of seizures, and shortened the duration of fully kindled seizures in chronic epilepsy model mice. Oridonin decreased abnormal discharge during epileptic episodes and suppressed increased neuronal excitability. In vitro experiments showed that oridonin alleviated pyroptosis in hippocampal HT22 neurons. CONCLUSION: Oridonin exerts neuroprotective effects by inhibiting pyroptosis through the NLRP3/caspase-1 pathway in chronic epilepsy model mice. It also reduces pyroptosis in hippocampal neurons in vitro, suggesting its potential as a therapy for epilepsy.


Subject(s)
Anticonvulsants , Disease Models, Animal , Diterpenes, Kaurane , Epilepsy , Hippocampus , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Neuroprotective Agents , Pyroptosis , Animals , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Epilepsy/drug therapy , Pyroptosis/drug effects , Mice , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Male , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Pentylenetetrazole , Mice, Inbred C57BL , Inflammasomes/metabolism , Inflammasomes/drug effects , Cell Line , Seizures/drug therapy
9.
Opt Lett ; 49(9): 2365-2368, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691720

ABSTRACT

Near-infrared nanosecond (ns) single-longitudinal-mode (SLM) pulse light generated from an optical parametric oscillator (OPO) is an important source in nonlinear optics and high-precision spectral analysis. In this Letter, a stable SLM near-infrared ns pulse light source generated from the OPO is presented, which is achieved by developing a seed-injection automatic locking technique based on a pulse-integrated photodetector (PIPD). Depending on the PIPD, the peak power of the pulse light detected by the photodiode is converted to the average power by integrating several pulses. As a result, the detector saturation is thoroughly eliminated, and the interference signal including the resonance point between seed and pulse lights can easily be attained by scanning the resonator length. On this basis, a microcontroller unit (MCU) is employed to realize automatic locking by looking for the minimum value of the interference signal. Finally, a SLM 824 nm pulse light source with an output power of 20.5 W and a linewidth of 51.42 MHz is obtained. The presented method can pave the way to implement a low-cost and compact high-average-power SLM pulse OPO.

10.
Sci Total Environ ; 931: 172918, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697522

ABSTRACT

The source apportionment and main formation pathway of nitrate aerosols in China are not yet fully understood. In this study, PM2.5 samples were collected in Shanghai in the summer and winter of 2019. Water-soluble inorganic ions and isotopic signatures of stable nitrogen (δ15N-NO3-) and stable oxygen (δ18O-NO3-) in PM2.5 were determined. The results showed that NO3- was less important in summer (NO3-/SO42- = 0.4 ± 0.8), while it became the dominant species in winter (52.1 %). The average values of δ15N-NO3- and δ18O-NO3- in summer were + 2.0 ± 6.1 ‰ and 63.3 ± 9.4 ‰ respectively, which were significantly lower than those in winter (+7.2 ± 3.4 ‰ and 88.3 ± 12.1 ‰), indicating discrepancies between NOx sources and nitrate formation pathways. Both δ15N-NO3- and δ18O-NO3- were elevated at night, demonstrating that N2O5 hydrolysis contributed to the nocturnal nitrate increase even in summer. The contribution of the OH oxidation pathway to nitrate aerosols averaged at 70.5 ± 17.0 % in summer and N2O5 hydrolysis dominated the nitrate production in winter (approximately 80 %). On average, vehicle exhaust, coal combustion, natural gas burning, and soil emission contributed 50.7 %, 21.5 %, 15.9 %, and 11.9 %, respectively, to nitrate aerosols in summer, and contributed 56.8 %, 23.9 %, 13.6 %, and 5.7 %, respectively, to nitrate production in winter. Notably, natural gas burning is a non-negligible source of nitrate aerosols in Shanghai. In contrast to an inverse correlation between δ15N-NO3- and PM2.5, the value of δ18O-NO3- was positively correlated with nitrate concentration and aerosol liquid water content (ALWC) in winter, suggesting that explosive growth of nitrate was driven by continuous accumulation of N-depleted NOx and rapid N2O5 hydrolysis under calm and humid conditions. To continuously improve air quality, priority control should be given to vehicle emissions as the dominant source of NOx and volatile organic compounds (VOCs) in Shanghai.

11.
Adv Sci (Weinh) ; : e2401657, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647365

ABSTRACT

The engineering of ferroic orders, which involves the evolution of atomic structure and local ferroic configuration in the development of next-generation electronic devices. Until now, diverse polarization structures and topological domains are obtained in ferroelectric thin films or heterostructures, and the polarization switching and subsequent domain nucleation are found to be more conducive to building energy-efficient and multifunctional polarization structures. In this work, a continuous and periodic strain in a flexible freestanding BaTiO3 membrane to achieve a zigzag morphology is introduced. The polar head/tail boundaries and vortex/anti-vortex domains are constructed by a compressive strain as low as ≈0.5%, which is extremely lower than that used in epitaxial rigid ferroelectrics. Overall, this study c efficient polarization structures, which is of both theoretical value and practical significance for the development of next-generation flexible multifunctional devices.

12.
J Inflamm Res ; 17: 2009-2021, 2024.
Article in English | MEDLINE | ID: mdl-38566981

ABSTRACT

Purpose: This study aimed to investigate the relationship between peripheral blood indices and the efficacy and prognosis of advanced esophageal squamous cell carcinoma (ESCC) patients treated with camrelizumab. Patients and Methods: We retrospectively analyzed 64 patients who received camrelizumab for advanced ESCC at the Second People's Hospital of Lianyungang City between July 2020 and June 2022. The study included examination of the neutrophil-to-lymphocyte ratio (NLR), the platelet-to-lymphocyte ratio (PLR), the systemic inflammation index (SII), the lymph-to-monocytes ratio (LMR), the absolute lymphocyte count (ALC), and lactate dehydrogenase (LDH). We used multivariate logistic regression analysis to explore the link existing between peripheral blood and the efficacy of treatment. Determination of potential prognostic factors for Progression-free survival (PFS) and Overall survival (OS) using Cox regression analysis. The nomogram model was developed based on the results of the Cox multivariate analysis. Patients were divided into three groups according to the reduction in LDH and LDL levels before treatment, and the Kaplan-Meier survival curves for the three groups were compared and ROC curves for LDH combined with PLR were plotted. Results: Lower LDH (OR=6.237, 95% CI: 1.625-23.944) were independently associated with disease control rates(DCR). LDH was independently correlated with PFS (HR: 0.227 95% CI: 0.099-0.517). LDH and PLR were independently linked to OS. The C index of the nomogram model is 0.819, indicating good predictive performance. Kaplan-Meier Survival Curve suggested better OS in patients with reduced pretreatment LDH and PLR. The area under the ROC curve showed that the LDH index combined with the PLR index predicts patient survival better than the index alone. Conclusion: LDH combined with PLR predicted prognosis in patients with ESCC treated with camrelizumab.

13.
Exp Neurol ; 377: 114794, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685307

ABSTRACT

BACKGROUND: Interleukin-1 receptor-associated kinase 4 (IRAK4) plays an important role in immune modulation in various central nervous system disorders. However, IRAK4 has not been reported in epilepsy models in animal and clinical studies, nor has its involvement in regulating pyroptosis in epilepsy. METHOD: First, we performed transcriptome sequencing, quantitative real-time polymerase chain reaction, and western blot analysis on the hippocampal tissues of refractory epilepsy patients to measure the mRNA and protein levels of IRAK4 and pyroptosis-related proteins. Second, we successfully established a pentylenetetrazol (PTZ)-induced seizure mouse model. We conducted behavioral tests, electroencephalography, virus injection, and molecular biology experiments to investigate the role of IRAK4 in seizure activity regulation. RESULTS: IRAK4 is upregulated in the hippocampus of epilepsy patients and PTZ-induced seizure model mice. IRAK4 expression is observed in the hilar neurons of PTZ-induced mice. Knocking down IRAK4 in PTZ-induced mice downregulated pyroptosis-related protein expression and alleviated seizure activity. Overexpressing IRAK4 in naive mice upregulated pyroptosis-related protein expression and increased PTZ-induced abnormal neuronal discharges. IRAK4 and NF-κB were found to bind to each other in patient hippocampal tissue samples. Pyrrolidine dithiocarbamate reversed the pyroptosis-related protein expression increase caused by PTZ. PF-06650833 alleviated seizure activity and inhibited pyroptosis in PTZ-induced seizure mice. CONCLUSION: IRAK4 plays a key role in the pathological process of epilepsy, and its potential mechanism may be related to pyroptosis mediated by the NF-κB/NLRP3 signaling pathway. PF-06650833 has potential as a therapeutic agent for alleviating epilepsy.


Subject(s)
Epilepsy , Hippocampus , Interleukin-1 Receptor-Associated Kinases , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Pyroptosis , Seizures , Signal Transduction , Animals , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Hippocampus/metabolism , Hippocampus/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Pyroptosis/physiology , Mice , Signal Transduction/drug effects , Signal Transduction/physiology , Humans , NF-kappa B/metabolism , Male , Seizures/metabolism , Seizures/chemically induced , Neurons/metabolism , Neurons/drug effects , Epilepsy/metabolism , Epilepsy/chemically induced , Female , Mice, Inbred C57BL , Adult , Pentylenetetrazole/toxicity , Young Adult , Adolescent , Child
14.
Front Cell Infect Microbiol ; 14: 1363437, 2024.
Article in English | MEDLINE | ID: mdl-38529473

ABSTRACT

Purpose: The objective of this study was to investigate the epidemiological characteristics, distribution of isolates, prevailing patterns, and antibiotic susceptibility of bacterial keratitis (BK) in a Tertiary Referral Hospital located in Southwest China. Methods: A retrospective analysis was conducted on 660 cases of bacterial keratitis occurring between January 2015 and December 2022. The demographic data, predisposing factors, microbial findings, and antibiotic sensitivity profiles were examined. Results: Corneal trauma emerged as the most prevalent predisposing factor, accounting for 37.1% of cases. Among these cases, bacterial culture results were positive in 318 cases, 68 species of bacteria were identified. The most common Gram-Positive bacteria isolated overall was the staphylococcus epidermis and the most common Gram-Negative bacteria isolated was Pseudomonas aeruginosa. Methicillin-Resistant Staphylococci accounted for 18.1% of all Gram-Positive bacteria. The detection rate of P. aeruginosa showed an increasing trend over time (Rs=0.738, P=0.037). There was a significant decrease in the percentage of Gram-Negative microorganisms over time (Rs=0.743, P=0.035). The sensitivity of Gram-Positive bacteria to linezolid, vancomycin, tigecycline, quinupristin/dalfopristin, and rifampicin was over 98%. The sensitivity rates of Gram-Negative bacteria to amikacin, meropenem, piperacillin/tazobactam, cefoperazone sodium/sulbactam, ceftazidime, and cefepime were all above 85%. In patients with a history of vegetative trauma, the possibility of BK should be taken into account in addition to the focus on fungal keratitis. Conclusion: The microbial composition primarily consists of Gram-Positive cocci and Gram-Negative bacilli. Among the Gram-Positive bacteria, S. epidermidis and Streptococcus pneumoniae are the most frequently encountered, while P. aeruginosa is the predominant Gram-Negative bacteria. To combat Gram-Positive bacteria, vancomycin, linezolid, and rifampicin are considered excellent antimicrobial agents. When targeting Gram-Negative pathogens, third-generation cephalosporins exhibit superior sensitivity compared to first and second-generation counterparts. As an initial empirical treatment for severe cases of bacterial keratitis and those unresponsive to fourth-generation fluoroquinolones in community settings, the combination therapy of vancomycin and tobramycin is a justifiable approach. Bacterial keratitis can be better managed by understanding the local etiology and antibacterial drug susceptibility patterns.


Subject(s)
Eye Infections, Bacterial , Keratitis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Linezolid/therapeutic use , Vancomycin , Rifampin , Retrospective Studies , Tertiary Care Centers , Drug Resistance, Bacterial , Cefoperazone/therapeutic use , Eye Infections, Bacterial/drug therapy , Eye Infections, Bacterial/epidemiology , Sulbactam/therapeutic use , Gram-Positive Bacteria , Staphylococcus , Gram-Negative Bacteria , Keratitis/drug therapy , Keratitis/epidemiology , Keratitis/microbiology , Microbial Sensitivity Tests
15.
Natl Sci Rev ; 11(4): nwae033, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38469545

ABSTRACT

The structural engineering of metastable nanomaterials with abundant defects has attracted much attention in energy-related fields. The high-temperature shock (HTS) technique, as a rapidly developing and advanced synthesis strategy, offers significant potential for the rational design and fabrication of high-quality nanocatalysts in an ultrafast, scalable, controllable and eco-friendly way. In this review, we provide an overview of various metastable micro- and nanomaterials synthesized via HTS, including single metallic and bimetallic nanostructures, high entropy alloys, metal compounds (e.g. metal oxides) and carbon nanomaterials. Note that HTS provides a new research dimension for nanostructures, i.e. kinetic modulation. Furthermore, we summarize the application of HTS-as supporting films for transmission electron microscopy grids-in the structural engineering of 2D materials, which is vital for the direct imaging of metastable materials. Finally, we discuss the potential future applications of high-throughput and liquid-phase HTS strategies for non-equilibrium micro/nano-manufacturing beyond energy-related fields. It is believed that this emerging research field will bring new opportunities to the development of nanoscience and nanotechnology in both fundamental and practical aspects.

16.
Carbohydr Polym ; 334: 122006, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553211

ABSTRACT

Different types of functional oligosaccharides exhibit varying degrees of immune-enhancing effects, which might be attributable to differences in their glycosyl structures. The differences in the immunomodulatory action of three functional oligosaccharides with distinct glycosyl compositions: cello-oligosaccharides (COS), manno-oligosaccharides (MOS), and xylo-oligosaccharides (XOS), were investigated in mouse-derived macrophage RAW264.7. Moreover, the immune enhancement mechanism of oligosaccharides with diverse glycosyl compositions was investigated from a molecular interaction perspective. The TLR4-dependent immunoregulatory effect of functional oligosaccharides was shown by measuring the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells treated with different functional oligosaccharides, both with and without Resatorvid [TAK-242] (a Toll-like receptor 4 [TLR4] inhibitor). Western blot analysis showed that binding of the three oligosaccharides to TLR4 activated the downstream signaling pathway and consequently enhanced the immune response. The fluorescence spectra and molecular docking results revealed that the main mechanisms by which these oligosaccharides attach to the TLR4 active pocket are hydrogen bonds and van der Waals forces. Functional oligosaccharides were ranked according to their affinity for TLR4, as follows: MOS > COS > XOS, indicating that oligosaccharides or polysaccharides containing mannose units may confer significant advantages for immune enhancement.


Subject(s)
Monosaccharides , Toll-Like Receptor 4 , Animals , Mice , Toll-Like Receptor 4/metabolism , Molecular Docking Simulation , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Immunity , Immunomodulation
17.
Sci Total Environ ; 926: 171995, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547977

ABSTRACT

Dichloroacetonitrile (DCAN) is an emerging disinfection by-product (DBP) that is widespread in drinking water. However, the pathway for DCAN formation from aromatic amino acids remains unclear, leading to a lack of an understanding of its explicit fate during chloramination. In this study, we investigated the specific formation mechanism of DCAN during the chloramination of phenylalanine based on reaction kinetics and chemical thermodynamics. The reason for differences between aldehyde and decarboxylation pathways was explained, and kinetic parameters of the pathways were obtained through quantum chemistry calculations. The results showed that the reaction rate constant of the rate-limiting step of the aldehyde pathway with 1.9 × 10-11 s-1 was significantly higher than that of decarboxylation (3.6 × 10-16 s-1 M-1), suggesting that the aldehyde pathway is the main reaction pathway for DCAN formation during the chloramination of phenylalanine to produce DCAN. Subsequently, theoretical calculations were performed to elucidate the effect of pH on the formation mechanism, which aligned well with the experimental results. Dehydrohalogenation was found to be the rate-limiting step under acidic conditions with reaction rate constants higher than those of the rate-limiting step (expulsion of amines) under neutral conditions, increasing the rate of DCAN formation. This study highlights the differences in DCAN formation between the decarboxylation and aldehyde pathways during the chloramination of precursors at both molecular and kinetic levels, contributing to a comprehensive understanding of the reaction mechanisms by which aromatic free amino acids generate DCAN.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Phenylalanine , Halogenation , Water Purification/methods , Disinfection , Acetonitriles/chemistry , Aldehydes , Water Pollutants, Chemical/analysis
18.
ACS Appl Mater Interfaces ; 16(11): 13828-13838, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38448219

ABSTRACT

Alluaudite sodium iron sulfate (NFS) exhibits great potential for use in sodium-ion battery cathodes due to its elevated operating potential and abundant element reserves. However, conventional solid-state methods demonstrate a low heating/cooling rate and sluggish reaction kinetics, requiring a long thermal treatment to effectively fabricate NFS cathodes. Herein, we propose a thermal shock (TS) strategy to synthesize alluaudite sodium iron sulfate cathodes using either hydrous or anhydrous raw materials. The analysis of the phase formation process reveals that TS treatment can significantly facilitate the removal of crystal water and decomposition of the intermediate phase Na2Fe(SO4)2 in the hydrous precursor. In the case of the anhydrous precursor, the kinetics of the combination reaction between Na2SO4 and FeSO4 can be also accelerated by TS treatment. Consequently, pure NFS phase formation can be completed after a substantially shorter time of post-sintering, thereby saving significant time and energy. The TS-treated NFS cathode derived from hydrous precursor exhibits higher retention after 200 cycles at 1C and better rate capability than the counterpart prepared by conventional long-term tube furnace sintering, demonstrating the great potential of this novel strategy.

19.
J Clin Neurosci ; 123: 72-76, 2024 May.
Article in English | MEDLINE | ID: mdl-38547819

ABSTRACT

OBJECTIVES: The primary aim of this study is to explore the factors associated with delirium incidence in postoperative patients who have undergone endoscopic transsphenoidal approach surgery for pituitary adenoma. METHODS: The study population included patients admitted to Tianjin Huanhu Hospital's Skull Base Endoscopy Center from January to December 2022, selected through a retrospective cohort study design. The presence of perioperative delirium was evaluated using the 4 'A's Test (4AT) scale, and the final diagnosis of delirium was determined by clinicians. Statistical analysis included Propensity Score Matching (PSM), χ2 Test, and Binary Logistic Regression. RESULTS: A total of 213 patients were included in this study, and the incidence of delirium was found to be 29.58 % (63/213). Among them, 126 patients were selected using PSM (delirium:non-delirium = 1:1), ensuring age, gender, and pathology were matched. According to the results of univariate analysis conducted on multiple variables, The binary logistic regression indicated that a history of alcoholism (OR = 6.89, [1.60-29.68], P = 0.010), preoperative optic nerve compression symptoms (OR = 4.30, [1.46-12.65], P = 0.008), operation time ≥3 h (OR = 5.50, [2.01-15.06], P = 0.001), benzodiazepines for sedation (OR = 3.94, [1.40-11.13], P = 0.010), sleep disorder (OR = 3.86, [1.40-10.66], P = 0.009), and physical restraint (OR = 4.53, [1.64-12.53], P = 0.004) as independent risk factors for postoperative delirium following pituitary adenoma surgery. CONCLUSIONS: For pituitary adenoma patients with a history of alcoholism and presenting symptoms of optic nerve compression, as well as an operation time ≥3 h, enhancing communication between healthcare providers and patients, improving perioperative sleep quality, and reducing physical restraint may help decrease the incidence of postoperative delirium.


Subject(s)
Adenoma , Delirium , Pituitary Neoplasms , Postoperative Complications , Humans , Male , Female , Retrospective Studies , Middle Aged , Pituitary Neoplasms/surgery , Adenoma/surgery , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Delirium/etiology , Delirium/epidemiology , Adult , Risk Factors , Incidence , Aged , Cohort Studies , Neuroendoscopy/adverse effects , Neuroendoscopy/methods
20.
Epilepsy Res ; 201: 107315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364765

ABSTRACT

PURPOSE: Epilepsy is a debilitating disease that can lead to series of social and psychological issues, impairing the quality of life of people with epilepsy (PWE). This survey aimed to investigate the awareness, attitudes, and first-aid knowledge of epilepsy in university students METHOD: This cross-sectional study was conducted in Henan Province, China between January 1 and April 30, 2022. Students majored in education, medicine, science and engineering from 8 universities attended the study. The survey questionnaire comprised 28 questions covering 4 sections: demographic characteristics, awareness of epilepsy, attitudes toward PWE and knowledge of first aid for seizures. RESULTS: A total of 2376 university students completed the questionnaire. 94.7% heard of epilepsy. In the first aid knowledge section, individual question was correctly answered by at least 50% students, 9.3% students correctly answered all questions. Attitude toward PWE was independently (R2 =0.108, F=73.227, p < 0.001) associated with both awareness of epilepsy (B=0.411, p < 0.001) and first aid knowledge of epilepsy (B=0.047, p = 0.001). Among the three majors, medical students had more positive attitudes toward PWE than students majored in education, science and engineering (p < 0.05). However, medical students performed worse among the groups when answering the first aid knowledge questions. CONCLUSION: This survey showed that university students in Central China had a good awareness of epilepsy. For medical students, improvements are necessary for the awareness of the first aid knowledge for seizure.


Subject(s)
Epilepsy , First Aid , Humans , Cross-Sectional Studies , Universities , Quality of Life , Health Knowledge, Attitudes, Practice , Epilepsy/therapy , Epilepsy/psychology , Seizures , Students/psychology , Surveys and Questionnaires , China
SELECTION OF CITATIONS
SEARCH DETAIL
...