Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(10): 12546-12557, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32813499

ABSTRACT

Room-temperature self-healing and self-growing of the exoskeleton with aligned structures in insects has few analogs in synthetic materials. Insect cuticle, such as elytra in beetles, with a typical lightweight lamellar structure, has shown this capability, which is attributed to the accumulation of phenol oxidase with polyphenol and amine-rich compounds in the hard cuticle. In this study, laminar-structure-based intelligence is imitated by incorporating adaptable and growable pyrogallol (PG)-borax dynamic-covalent bonds into a poly(acrylamide)-clay network. The events that lead to crack formation and water accumulation quickly trigger the deprotection of PG. Subsequently, atmospheric O2, as a regeneration source, activates PG oxidative self-polymerization. Multiple permanent and dynamic cross-links, with the involvement of the sacrificed borax, and initiation of a series of intelligent responses occur. The fabricated composites with an aligned lamellar structure exhibit outstanding characteristics, such as air/water-triggered superstrong adhesion, self-repairing, self-sealing and resealing, and reprocessing. Moreover, the strategy endows the composites with a self-growing capability, which leads to a 4- to 10-fold increase in its strength in an outdoor climate (up to 51 MPa). This study could lead to advances in the development of air/water-responsive composite materials for applications such as adaptive barriers.

2.
Chem Sci ; 11(23): 6026-6030, 2020 May 22.
Article in English | MEDLINE | ID: mdl-34094094

ABSTRACT

We report the first example of photo-induced carbocation-enhanced charge transport in triphenylmethane junctions using the scanning tunneling microscopy break junction (STM-BJ) technique. The electrical conductance of the carbocation state is enhanced by up to 1.5 orders of magnitude compared to the initial state, with stability lasting for at least 7 days. Moreover, we can achieve light-induced reversible conductance switching with a high ON-OFF ratio in carbocation-based single-molecule junctions. Theoretical calculations reveal that the conductance increase is due to a significant decrease of the HOMO-LUMO gap and also the enhanced transmission close to the Fermi levels when the carbocation forms. Our findings encourage continued research toward developing optoelectronics and carbocation-based devices at the single-molecule level.

3.
Macromol Rapid Commun ; 41(2): e1900450, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31778252

ABSTRACT

The latest generation of wearable devices features materials that are flexible, conductive, and stretchable, thus meeting the requirements of stability and reliability. However, the metal conductors that are currently used in various equipments cannot achieve these high performance expectations. Hence, a mussel-inspired conductive hydrogel (HAC-B-PAM) is prepared with a facile approach by employing polyacrylamide (PAM), dopamine-functionalized hyaluronic acid (HAC), borax as a dynamic cross-linker agent, and Li+ and Na+ as conductive ions. HAC-B-PAM hydrogels demonstrate an excellent stretchability (up to 2800%), high tensile toughness (42.4 kPa), self-adhesive properties (adhesion strength to porcine skin of 49.6 kPa), and good self-healing properties without any stimuli at room temperature. Furthermore, the fabricated hydrogel-based strain sensor is sensitive to deformation and can detect human body motion. Multifunctional hydrogels can be assembled into flexible wearable devices with potential applications in the field of electronic skin and soft robotics.


Subject(s)
Adhesives/chemistry , Bivalvia/chemistry , Hydrogels/chemistry , Wearable Electronic Devices , Acrylic Resins/chemistry , Animals , Biosensing Techniques , Borates/chemistry , Dopamine/chemistry , Elasticity , Electric Conductivity , Humans , Hyaluronic Acid/chemistry , Ions/chemistry , Motion , Shear Strength
4.
PLoS One ; 14(9): e0221900, 2019.
Article in English | MEDLINE | ID: mdl-31479479

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia. Patients with valvular heart disease (VHD) frequently have AF. Growing evidence demonstrates that a specifically altered pattern of microRNA (miRNA) expression is related to valvular heart disease with atrial fibrillation (AF-VHD) processes. However, the combinatorial regulation by multiple miRNAs in inducing AF-VHD remains largely unknown. METHODS: The work identified AF-VHD-specific miRNAs and their combinations through mapping miRNA expression profile into differential co-expression network. The expressions of some dysregulated miRNAs were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The regulations of signaling pathways by the combinatorial miRNAs were predicted by enrichment analysis tools. RESULTS: Thirty-two differentially expressed (DE) miRNAs were identified to be AF-VHD-specific, some of which were new findings. These miRNAs interacted to form 5 combinations. qRT-PCR confirmed the different expression of several identified miRNAs, which illustrated the reliability and biomarker potentials of 32 dysregulation miRNAs. The biological characteristics of combinatorial miRNAs related to AF-VHD were highlighted. Twelve signaling pathways regulated by combinatorial miRNAs were predicted to be possibly associated with AF-VHD. CONCLUSIONS: The AF-VHD-related signaling pathways regulated by combinatorial miRNAs may play an important role in the occurrence of AF-VHD. The work brings new insights into biomarkers and miRNA combination regulation mechanism in AF-VHD as well as further biological experiments.


Subject(s)
Atrial Fibrillation/complications , Atrial Fibrillation/genetics , Heart Valve Diseases/complications , Heart Valve Diseases/genetics , MicroRNAs/genetics , Adult , Aged , Case-Control Studies , Female , Heart Valve Diseases/metabolism , Humans , Male , MicroRNAs/metabolism , Middle Aged , Mitral Valve/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Transcriptome
5.
Chem Asian J ; 14(9): 1404-1408, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30844121

ABSTRACT

Artificial intelligence sensations have aroused scientific interest from electronic conductors to bio-inspired ionic conductors. The conductivity of electrons decreases with increasing temperature, while the ionic conductivity agrees with an Arrhenius equation or a modified Vogel-Tammann-Fulcher (VTF) equation. Herein, thermo-responsive poly(N-isopropyl amide) (PNIPAm) and single-ion-conducting poly(2-acrylamido-2-methyl-1-propanesulfonic lithium salt) (PAMPSLi) were copolymerized via a facile radical polymerization to demonstrate a very intriguing anti-Arrhenius ionic conductivity behaviour during thermally induced volume-phase transition. These smart hydrogels presented very promising scaffolds for architecting flexible, wearable or advanced functional ionic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...