Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
Article in English | MEDLINE | ID: mdl-38716540

ABSTRACT

Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.

2.
Lett Appl Microbiol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719546

ABSTRACT

Aeromonas dhakensis is reported as an emerging pathogenic species within the genus Aeromonas and is widely distributed in tropical coastal areas. This study provided a detailed description and characterization of a strain of A. dhakensis (202108B1) isolated from diseased Ancherythroculter nigrocauda in an inland region of China. Biochemical tests identified the isolate at the genus level, and the further molecular analysis of concatenated housekeeping gene sequences revealed that the strain belonged to the species A. dhakensis. The isolated A. dhakensis strain was resistant to five antibiotics, namely, penicillin, ampicillin, clindamycin, cephalexin and imipenem, while it was susceptible or showed intermediate resistance to most of the other fifteen tested antibiotics. The isolated strain of A. dhakensis caused acute haemorrhagic septicaemia and tissue damage in artificially infected A. nigrocauda, with a median lethal dose of 7.76×104 CFU/fish. The genome size of strain 202108B1 was 5043286 bp, including one chromosome and four plasmids. This is the first detailed report of the occurrence of infection caused by an A. dhakensis strain causing infection in an aquaculture system in inland China, providing important epidemiological data on this potential pathogenic species.

3.
Eur J Med Chem ; 271: 116437, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38701712

ABSTRACT

As a cytosolic enzyme involved in the purine salvage pathway metabolism, purine nucleoside phosphorylase (PNP) plays an important role in a variety of cellular functions but also in immune system, including cell growth, apoptosis and cancer development and progression. Based on its T-cell targeting profile, PNP is a potential target for the treatment of some malignant T-cell proliferative cancers including lymphoma and leukemia, and some specific immunological diseases. Numerous small-molecule PNP inhibitors have been developed so far. However, only Peldesine, Forodesine and Ulodesine have entered clinical trials and exhibited some potential for the treatment of T-cell leukemia and gout. The most recent direction in PNP inhibitor development has been focused on PNP small-molecule inhibitors with better potency, selectivity, and pharmacokinetic property. In this perspective, considering the structure, biological functions, and disease relevance of PNP, we highlight the recent research progress in PNP small-molecule inhibitor development and discuss prospective strategies for designing additional PNP therapeutic agents.


Subject(s)
Enzyme Inhibitors , Purine-Nucleoside Phosphorylase , Small Molecule Libraries , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/metabolism , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Molecular Structure , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Drug Development
4.
ACS Appl Mater Interfaces ; 16(19): 24840-24850, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700749

ABSTRACT

Gel polymer electrolytes are an indispensable part of flexible supercapacitors, since their various characteristics determine the device performance. Here, a composite gel electrolyte (FLPS) mainly consisting of polyvinyl alcohol (PVA), sodium alginate (SA), K3Fe(CN)6/K4Fe(CN)6, and LiCl is rationally designed, in which PVA and SA form a robust three-dimensional network, the redox pair of K3Fe(CN)6/K4Fe(CN)6 serves as a cross-linking agent with SA and even donates the oxidation-reduction reaction from the Fe3+/Fe2+ couple with additional capacitance for the device, and LiCl functions as an ion carrier and a water-retaining salt to improve the long-term stability of FLPS. Thus, the FLPS-based supercapacitor exhibits superior electrochemical characteristics, displaying impressive pseudocapacitance across all current densities and excellent cycling stability (∼99.07% of capacitance retention after 10,000 cycles). Moreover, the FLPS-based supercapacitor demonstrates great low-temperature working ability and pressure responsiveness, suggesting its freeze-resistance, flexibility, and pressure sensing potential. This work provides a promising strategy for preparing tough gel polymer electrolytes with both ion transfer and charge storage ability.

5.
Heliyon ; 10(9): e30456, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720716

ABSTRACT

Potatoes, as a high-nitrogen (N)-demand crop, are strongly influenced by both the quantity and form of N supply. Previous studies have demonstrated that applying nitrate N prior to tuber formation and ammonium N post-tuber formation can substantially enhance potato yields and improve N fertilizer use efficiency. However, the ammonium N introduced into the soil undergoes nitrification, creating challenges in aligning the N supply form with the needs of potatoes. This study explored novel N regulation strategies aimed at augmenting potato yields and improving N fertilizer use efficiency. Two field experiments were conducted from 2020 to 2022. Experiment 1 involved four N gradients, namely no N, 150 kg N ha-1, 300 kg N ha-1, and 450 kg N ha-1. Soil samples were collected regularly to determine the transformation patterns of soil ammonium N during potato growth. Experiment 2 included three N management practices: farmer practice (Con), "nitrate followed by ammonium" with nitrification inhibitor (N-NI), and optimization (the soil ammonium N transformation-based split application of N fertilizer, Opt). The potato yield and N fertilizer use efficiency were compared to assess the performance of the optimized strategy. The results showed that 90 % of the ammonium N transformed 20 days after the basal dressing of N. When N fertilizer was applied as top dressing during the tuber formation and bulking stages, more than 90 % of ammonium N was transformed after 10 days. The optimized strategy resulted in a 20 % increase in potato yield, a 20 % increase in N fertilizer partial factor productivity, and a 12-20 % reduction in residual inorganic N in the 0-60 cm soil layer. This suggests that ammonium N applied as base fertilizer exhibits a relatively slow transformation rate, while applying ammonium N as top dressing during the tuber formation and bulking stages accelerates the transformation rate. The split application of ammonium N based on soil ammonium N transformation patterns can improve the alignment between the N supply form with the specific demands of potatoes.

6.
Angew Chem Int Ed Engl ; : e202403949, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613188

ABSTRACT

Quasi-solid polymer electrolyte (QPE) lithium (Li)-metal battery holds significant promise in the application of high-energy-density batteries, yet it suffers from low ionic conductivity and poor oxidation stability. Herein, a novel self-built electric field (SBEF) strategy is proposed to enhance Li+ transportation and accelerate the degradation dynamics of carbon-fluorine bond cleavage in LiTFSI by optimizing the termination of MXene. Among them, the SBEF induced by dielectric Nb4C3F2 MXene effectively constructs highly conductive LiF-enriched SEI and CEI stable interfaces, moreover, enhances the electrochemical performance of the QPE. The related Li-ion transfer mechanism and dual-reinforced stable interface are thoroughly investigated using ab initio molecular dynamics, COMSOL, XPS depth profiling, and ToF-SIMS. This comprehensive approach results in a high conductivity of 1.34 mS cm-1, leading to a small polarization of approximately 25 mV for Li//Li symmetric cell after 6000 h. Furthermore, it enables a prolonged cycle life at a high voltage of up to 4.6 V. Overall, this work not only broadens the application of MXene for QPE but also inspires the great potential of the self-built electric field in QPE-based high-voltage batteries.

7.
Medicine (Baltimore) ; 103(16): e37796, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640283

ABSTRACT

BACKGROUND: Asthma ranks among the most prevalent non-communicable diseases worldwide. Previous studies have elucidated the significant role of the immune system in its pathophysiology. Nevertheless, the immune-related mechanisms underlying asthma are complex and still inadequately understood. Thus, our objective was to investigate novel key biomarkers and immune infiltration characteristics associated with asthma by employing integrated bioinformatics tools. METHODS: In this study, we conducted a weighted gene co-expression network analysis (WGCNA) to identify key modules and genes potentially implicated in asthma. Functional annotation of these key modules and genes was carried out through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Additionally, we constructed a protein-protein interaction (PPI) network using the STRING database to identify 10 hub genes. Furthermore, we evaluated the relative proportion of immune cells in bronchial epithelial cell samples from 20 healthy individuals and 88 asthmatic patients using CIBERSORT. Finally, we validated the hub genes and explored their correlation with immune infiltration. RESULTS: Furthermore, 20 gene expression modules and 10 hub genes were identified herein. Among them, complement component 3 (C3), prostaglandin I2 receptor (PTGIR), parathyroid hormone-like hormone (PTHLH), and C-X3-C motif chemokine ligand 1 (CX3CL1) were closely correlated with the infiltration of immune cells. They may be novel candidate biomarkers or therapeutic targets for asthma. Furthermore, B cells memory, and plasma cells might play an important role in immune cell infiltration after asthma. CONCLUSIONS: C3, PTGIR, CX3CL1, and PTHLH have important clinical diagnostic values and are correlated with infiltration of multiple immune cell types in asthma. These hub genes, B cells memory, and plasma cells may become important biological targets for therapeutic asthma drug screening and drug design.


Subject(s)
Asthma , Epithelial Cells , Humans , Asthma/genetics , Biomarkers , Computational Biology , Databases, Factual , Gene Regulatory Networks
8.
Front Plant Sci ; 15: 1305768, 2024.
Article in English | MEDLINE | ID: mdl-38434435

ABSTRACT

Plant species loss, driven by global changes and human activities, can have cascading effects on other trophic levels, such as arthropods, and alter the multitrophic structure of ecosystems. While the relationship between plant diversity and arthropod communities has been well-documented, few studies have explored the effects of species composition variation or plant functional groups. In this study, we conducted a long-term plant removal experiment to investigate the impact of plant functional group loss (specifically targeting tall grasses and sedges, as well as tall or short forbs) on arthropod diversity and their functional groups. Our findings revealed that the removal of plant functional groups resulted in increased arthropod richness, abundance and the exponential of Shannon entropy, contrary to the commonly observed positive correlation between plant diversity and consumer diversity. Furthermore, the removal of different plant groups had varying impacts on arthropod trophic levels. The removal of forbs had a more pronounced impact on herbivores compared to graminoids, but this impact did not consistently cascade to higher-trophic arthropods. Notably, the removal of short forbs had a more significant impact on predators, as evidenced by the increased richness, abundance, the exponential of Shannon entropy, inverse Simpson index and inverse Berger-Parker index of carnivores and abundance of omnivores, likely attributable to distinct underlying mechanisms. Our results highlight the importance of plant species identity in shaping arthropod communities in alpine grasslands. This study emphasizes the crucial role of high plant species diversity in controlling arthropods in natural grasslands, particularly in the context of plant diversity loss caused by global changes and human activities.

9.
Adv Sci (Weinh) ; 11(19): e2308584, 2024 May.
Article in English | MEDLINE | ID: mdl-38483019

ABSTRACT

Mechanical metamaterials are often designed with particular properties for specific load-bearing functions. Alternatively, this study aims to create a class of active lattice metamaterials, dubbed self-activated solids, that can learn desired stiffness tensors from the elastic deformations they experienced, a crucial feature to improve the performance, efficiency, and functionality of materials. Artificial adaptive matters that combine sensory, control, and actuation elements can offer appealing solutions. However, challenges still remain: The designs will rely on accurate off-line and global computations, as well as intricate coordination among individual elements. Here, a simple online and local learning strategy is initiated based on contrastive Hebbian learning to gradually guide self-activated solids to possess sought-after stiffness tensors autonomously and reversibly. During learning, the bond stiffness of the active lattice varies depending only on its local strain. The numerical tests show that the self-activated solid can not only achieve the desired bulk, shear, and coupling moduli but also manifest uni-mode and bi-mode extremal materials by itself after experiencing the corresponding elastic deformations. Further, the self-activated solid can also achieve the desired time-varying moduli when exposed to temporally different loads. The design is applicable to any lattice geometries and is resistant to damage and instabilities. The material design approach and the physical learning strategy suggested can benefit the design of autonomous materials, physical learning machines, and adaptive robots.

10.
Int Immunopharmacol ; 129: 111661, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38359662

ABSTRACT

Low back pain (LBP) is most commonly caused by intervertebral disc degeneration (IVDD). Pyroptosis, apoptosis, and necroptosis are crucial in IVDD pathogenesis; however, possible simultaneous occurrence in IVDD and co-regulation between the pathways and the regulatory mechanisms have not been investigated. PANoptosis is a regulated cell death (RCD) pathway with the key characteristics of pyroptosis, apoptosis, and necroptosis. This study revealed that tert-butyl hydroperoxide (TBHP) altered the expression of key proteins involved in PANoptosis in nucleus pulposus cells (NPCs). Furthermore, the natural product Kongensin A (KA), which has potential anti-necrotic and anti-inflammatory properties, inhibited PANoptosis. TAK1, often referred to as mitogen-activated protein kinase kinase kinase 7 (Map3k7), is a key regulator of innate immunity, cell death, inflammation, and cellular homeostasis; however, the physiological roles and regulatory mechanisms underlying IVDD remain unclear. In this study, we discovered that KA can upregulate TAK1 expression in NPCs, -which inhibits PANoptosis by suppressing oxidative stress. In conclusion, our results suggest that KA inhibits PANoptosis and delays IVDD progression in NPCs by upregulating TAK1 expression to maintain mitochondrial redox balance. Consequently, targeting TAK1 may be a promising therapeutic approach for IVDD therapy.


Subject(s)
Diterpenes , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/drug therapy , Apoptosis , Oxidative Stress , Intervertebral Disc/pathology
11.
Adv Clin Exp Med ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38318774

ABSTRACT

BACKGROUND: Rapamycin is known to induce autophagy, promote cell survival and inhibit the progression of diabetic nephropathy (DN). OBJECTIVES: The aim of this study was to examine the role of autophagy in the treatment of DN with rapamycin to provide the basis for the DN treatment with rapamycin. MATERIAL AND METHODS: Human mesangial cells (HMC) were cultured in a constant temperature incubator with 5% CO2, at 37°C and saturated humidity. Cells were divided into 5 groups and the 5-ethynyl-2-deoxyuridine (EdU) cell proliferation assay was used to determine cell proliferation. Flow cytometry was used to determine cell apoptosis, while GFP-RFP-LC3 showed autophagy flow. Western blot was employed to detect the expression of autophagy-related proteins LC3-II/LC3-I and P62. Enzyme-linked immunosorbent assay (ELISA) was used to determine the contents of type IV collagen fiber (Col4), hyaluronic acid (HA) and laminin (LA) in the extracellular matrix (ECM). RESULTS: Cell proliferation was the lowest in the hyperglycemic group. Additionally, the hyperglycemic group displayed the lowest number of autolysosomes compared to other groups. In contrast, the rapamycin group exhibited the highest number of autolysosomes. The LC3-II/LC3-I ratio was also the lowest in the hyperglycemic group, measuring 0.53 (0.50-0.58), while the expression level of P62 was significantly higher in that group at 0.98 (0.95-1.01) compared to other groups. Upon the introduction of rapamycin, the LC3-II/LC3-I ratio was significantly increased at 2.21 (1.95-2.21), and P62 was significantly decreased 0.38 (0.38-0.39) compared to the hyperglycemic group. Both changes were statistically significant, with p-values of 0.034 and 0.010, respectively. Enzyme-linked immunosorbent assay was employed to detect Col4, HA and LA content. The study findings demonstrated significantly higher levels of glucose in the hyperglycemic group in comparison to other groups. In contrast, the rapamycin group exhibited significantly lower levels of glucose than the hyperglycemic group, yet the difference was not statistically significant. CONCLUSIONS: Hyperglycemic can inhibit the autophagic activity of HMC, promote cell apoptosis, enhance ECM accumulation, and facilitate the DN progression. In contrast, rapamycin can elicit autophagy, decrease mesangial matrix proliferation, and therefore impede DN progression.

12.
J Environ Manage ; 353: 120257, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38330843

ABSTRACT

The typical lake wetlands in the middle and lower reaches of the Yangtze River are important wintering sites of cranes in China. The spatiotemporal evolution of crane populations and their habitats has great value in clarifying the pivotal role of regional lake wetlands in biodiversity conservation. Therefore, 2562 data points of four crane species were selected in this study. The data reflected the distributional position of the cranes over the period 2000-2020. Twelve surrounding environmental factors were selected to investigate the spatiotemporal evolution in the study area by using the MaxEnt model. The Jackknife method was used to identify the main environmental factors affecting the choice of crane habitats. The results indicated that: (1) Developed land in the study area increased by 42,795.81 hm2. The crane populations were mainly distributed in the farmland and mudflat, and their number decreased yearly. (2) From 2000 to 2020, the area of suitable crane habitat experienced an overall decrease. Specifically, the mid-suitable area dwindled by 6234.23 hm2, marking a substantial reduction of 52.05 %. Similarly, the most suitable area saw a decline of 786.41 hm2, representing a noteworthy decrease of 71.09 %. (3) The findings from the analysis of influencing factors revealed a dynamic pattern over the years. Habitat type, water density, and distance to water were the main influencing factors in the study area from 2000 to 2020. This study provides a new perspective on the conservation and structural habitat restoration of crane populations in the middle and lower reaches of the Yangtze River.


Subject(s)
Lakes , Wetlands , Animals , Ecosystem , Biodiversity , Birds , China , Water
13.
Plant Sci ; 341: 112016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311253

ABSTRACT

The discovery of co-suppression in plants has greatly boosted the study of gene silencing mechanisms, but its triggering mechanism has remained a mystery. In this study, we explored its possible trigger mechanism by using Fatty acid desaturase 2 (FAD2) and Fatty acid elongase 1 (FAE1) strong co-suppression systems. Analysis of small RNAs in FAD2 co-suppression lines showed that siRNAs distributed throughout the coding region of FAD2 with an accumulated peak. However, mutations of the peak siRNA-matched site and siRNA derived site had not alleviated the co-suppression of its transgenic lines. Synthetic FAD2 (AtFAD2sm), which has synonymous mutations in the entire coding region, failed to trigger any co-suppression. Furthermore, 5' and 3' portions of AtFAD2 and AtFAD2sm were swapped to form two hybrid genes, AtFAD2-3sm and AtFAD2-5sm. 80 % and 92 % of their transgenic lines exhibited co-suppression, respectively. Finally, FAE1s with different degrees of the continuous sequence identity compared with AtFAE1 were tested in their Arabidopsis transgenic lines, and the results showed the co-suppression frequency was reduced as their continuous sequence identity stepped down. This work suggests that contiguous identity between the entire coding regions of transgenic and native genes rather than a special region is essential for a strong co-suppression.


Subject(s)
Arabidopsis , Fatty Acid Desaturases , RNA Interference , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Genes, Plant/genetics , RNA, Small Interfering
14.
Cell Discov ; 10(1): 1, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172113

ABSTRACT

Thirst plays a vital role in the regulation of body fluid homeostasis and if deregulated can be life-threatening. Interoceptive neurons in the subfornical organ (SFO) are intrinsically osmosensitive and their activation by hyperosmolarity is necessary and sufficient for generating thirst. However, the primary molecules sensing systemic osmolarity in these neurons remain elusive. Here we show that the mechanosensitive TMEM63B cation channel is the osmosensor required for the interoceptive neurons to drive thirst. TMEM63B channel is highly expressed in the excitatory SFO thirst neurons. TMEM63B deletion in these neurons impaired hyperosmolarity-induced drinking behavior, while re-expressing TMEM63B in SFO restored water appetite in TMEM63B-deficient mice. Remarkably, hyperosmolarity activates TMEM63B channels, leading to depolarization and increased firing rate of the interoceptive neurons, which drives drinking behavior. Furthermore, TMEM63B deletion did not affect sensitivities of the SFO neurons to angiotensin II or hypoosmolarity, suggesting that TMEM63B plays a specialized role in detecting hyperosmolarity in SFO neurons. Thus, our results reveal a critical osmosensor molecule for the generation of thirst perception.

15.
Environ Sci Pollut Res Int ; 31(10): 15379-15397, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38294655

ABSTRACT

The objective of the study was to quantitatively analyze the heterogeneous effects of different green credit implementation methods on energy, environmental, and economic systems by developing a computable general equilibrium model. The specific green credit implementation methods are divided into interest-penalty policy for energy-intensive industries and interest preferential policy for green industries. Various approaches to implementing green credit can lead to distinct impacts on energy consumption, environmental outcomes, and economic performance. Green credit policy experiments are carried out utilizing short-, medium-, and long-term scenarios to investigate how the consequences of green credit policies evolve. The findings demonstrate that (1) implementing a penalty interest policy for energy-intensive industries can have substantial short-term environmental effects, cutting total demand for fossil energy and lowering carbon dioxide emissions significantly. As the cycle progresses, this effect will progressively fade and have a negative economic impact. (2) The interest preferential policy for the green industry has a significant promoting effect on green technology, and its energy and environmental effects will be reflected in the long term, and the effect will continue to increase, which has a positive promoting effect on the economy. (3) There are significant differences in the policy effects brought about by the different implementation methods of green credit policies. Both policies can positively affect social energy and the environment, but the effect cycles are different. When two types of interest policies are implemented in the economy, the negative economic effect of the penalty interest policy is greater than the positive effect of the preferential interest policy, which harms the macroeconomy. These conclusions will provide theoretical and practical references for the government and banks to choose a better green credit implementation path.


Subject(s)
Carbon Dioxide , Climate , Government , Policy , China , Economic Development
16.
Int J Food Microbiol ; 413: 110581, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38246026

ABSTRACT

Foodborne diseases caused by Staphylococcus aureus contamination on meat and meat products has gained increasing attention in recent years, while the pathogenicity of S. aureus is mainly attributed to its virulence factors production, which is primarily regulated by quorum sensing (QS) system. Herein, we aimed to uncover the inhibitory effects and mechanisms of citral (CIT) on virulence factors production by S. aureus, and further explore its potential application in pork preservation. Susceptibility test confirmed the antibacterial properties of CIT against S. aureus, the minimal inhibitory concentration (MIC) was 0.25 mg/mL. Treatment with sub-MICs of CIT reduced the hemolytic activity by inhibiting the production of α-hemolysin, and staphylococcal enterotoxins (SEs) production was significantly inhibited by CIT in both culture medium and pork without affecting bacterial growth. Transcriptomic analysis indicated that the differentially expression genes encoding α-hemolysin, SEs, and other virulence factors were down-regulated after treatment with 1/2MIC CIT. Moreover, the genes related to QS including agrA and agrC were also down-regulated, while the global transcriptional regulator sarA was up-regulated. Data here demonstrated that CIT could inhibited S. aureus virulence factors production through disturbing QS systems. In a challenge test, the addition of CIT caused a remarkable inhibition of S. aureus population and delay in lipid oxidation and color change on pork after 15 days incubation at 4 °C. These findings demonstrated that CIT could not only efficiently restrain the production of S. aureus virulence factors by disturbing QS, but also exhibit the potential application on the preservation of meat products.


Subject(s)
Acyclic Monoterpenes , Staphylococcal Infections , Staphylococcus aureus , Humans , Virulence Factors/genetics , Virulence Factors/metabolism , Hemolysin Proteins , Bacterial Proteins/metabolism , Enterotoxins/metabolism , Meat , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
17.
IEEE Trans Cybern ; 54(4): 2235-2243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37022030

ABSTRACT

This article addresses the tracking control problem of nonlinear pure-feedback systems, where the control coefficients and the dynamics of the references are unknown. Fuzzy-logic systems (FLSs) are used to approximate the unknown control coefficients and at the same time the adaptive projection law is designed to allow each fuzzy approximation to cross zero, which yields that the proposed method avoids the assumption of using Nussbaum function, that is, the unknown control coefficients never cross zeros. Another adaptive law is designed to estimate the unknown reference and then it is intergraded into the saturated tracking control law to achieve the uniformly ultimately bounded (UUB) performance of the resulting closed-loop system. Simulations show the feasibility and effectiveness of the proposed scheme.

18.
ISA Trans ; 145: 44-50, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072704

ABSTRACT

This paper focuses on the distributed adaptive sliding-mode control problem for two-dimensional (2-D) plane vehicle platoon with prescribed performance, angle constraints, and actuator faults. The quadratic spacing policy (QSP) is first adopted for the 2-D plane vehicle platoon to adjust the inter-vehicle spacing. The spacing error can converge within a finite time to the small region predetermined by a new finite-time performance function (FTPF). Meanwhile, a new transformed error function is introduced to convert the FTPF-constrained spacing errors into equivalent unconstrained ones. Besides, the property of the invertible nonlinear mapping function is used for the original system with the angle constraint to get a new unconstrained system. Moreover, a new controller based on hyperbolic tangent function is designed to handle actuator faults occurring multiple times over a period. Furthermore, the stability and string stability of the 2-D plane vehicle platoon are achieved through sliding-mode control. Finally, the simulation results validate the effectiveness of the proposed techniques.

19.
Plant Sci ; 338: 111905, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884080

ABSTRACT

'Nanguo' pear emitted a rich aroma when entirely ripe. The six-carbon (C6) volatiles, including the aldehydes, 2-hexenal, and hexanal, as well as their corresponding alcohols and esters which are derived from lipoxygenase pathway are the important volatile components in 'Nanguo' pears. However, the transcriptional regulation mechanism of aroma synthesis of 'Nanguo' pears remains largely unknown. bZIP transcription factors (TFs) mediate different developmental processes in plants. In this study, we identified and characterized a bZIP TF that is highly expressed and induced in 'Nanguo' pear fruits at the mature stage. The content of fatty acid-derived volatiles increased significantly in transgenic pears and tomatoes of PubZIP914 overexpression. Meanwhile, PubZIP914 could regulate PuLOX3.1 by binding directly to PuLOX3.1 promoter. The results of this study provide evidence demonstrating how bZIP transcription factors regulate fatty acid-derived volatiles biosynthesis during pear fruit ripening.


Subject(s)
Pyrus , Volatile Organic Compounds , Fatty Acids/metabolism , Pyrus/genetics , Pyrus/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Odorants , Fruit/metabolism , Volatile Organic Compounds/metabolism
20.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138994

ABSTRACT

The frequency and extent of transgene-mediated cosuppression varies substantially among plant genes. However, the underlying mechanisms leading to strong cosuppression have received little attention. In previous studies, we showed that the expression of FAD2 in the seeds of Arabidopsis results in strong RDR6-mediated cosuppression, where both endogenous and transgenic FAD2 were silenced. Here, the FAD2 strong cosuppression system was quantitatively investigated to identify the genetic factors by the expression of FAD2 in their mutants. The involvement of DCL2, DCL4, AGO1, and EIN5 was first confirmed in FAD2 cosuppression. SKI2, a remover of 3' end aberrant RNAs, was newly identified as being involved in the cosuppression, while DCL3 was identified as antagonistic to DCL2 and DCL3. FAD2 cosuppression was markedly reduced in dcl2, dcl4, and ago1. The existence of an RDR6-independent cosuppression was revealed for the first time, which was demonstrated by weak gene silencing in rdr6 ein5 ski2. Further investigation of FAD2 cosuppression may unveil unknown genetic factor(s).


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA Interference , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA, Small Interfering/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Silencing , RNA-Dependent RNA Polymerase/metabolism , Ribonuclease III/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...