Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786480

ABSTRACT

The traditional golden jackal optimization algorithm (GJO) has slow convergence speed, insufficient accuracy, and weakened optimization ability in the process of finding the optimal solution. At the same time, it is easy to fall into local extremes and other limitations. In this paper, a novel golden jackal optimization algorithm (SCMGJO) combining sine-cosine and Cauchy mutation is proposed. On one hand, tent mapping reverse learning is introduced in population initialization, and sine and cosine strategies are introduced in the update of prey positions, which enhances the global exploration ability of the algorithm. On the other hand, the introduction of Cauchy mutation for perturbation and update of the optimal solution effectively improves the algorithm's ability to obtain the optimal solution. Through the optimization experiment of 23 benchmark test functions, the results show that the SCMGJO algorithm performs well in convergence speed and accuracy. In addition, the stretching/compression spring design problem, three-bar truss design problem, and unmanned aerial vehicle path planning problem are introduced for verification. The experimental results prove that the SCMGJO algorithm has superior performance compared with other intelligent optimization algorithms and verify its application ability in engineering applications.

2.
Biomimetics (Basel) ; 9(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786508

ABSTRACT

In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.

3.
Sci Rep ; 14(1): 7578, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555275

ABSTRACT

To address the issues of lacking ability, loss of population diversity, and tendency to fall into the local extreme value in the later stage of optimization searching, resulting in slow convergence and lack of exploration ability of the artificial gorilla troops optimizer algorithm (AGTO), this paper proposes a gorilla search algorithm that integrates the positive cosine and Cauchy's variance (SCAGTO). Firstly, the population is initialized using the refractive reverse learning mechanism to increase species diversity. A positive cosine strategy and nonlinearly decreasing search and weight factors are introduced into the finder position update to coordinate the global and local optimization ability of the algorithm. The follower position is updated by introducing Cauchy variation to perturb the optimal solution, thereby improving the algorithm's ability to obtain the global optimal solution. The SCAGTO algorithm is evaluated using 30 classical test functions of Test Functions 2018 in terms of convergence speed, convergence accuracy, average absolute error, and other indexes, and two engineering design optimization problems, namely, the pressure vessel optimization design problem and the welded beam design problem, are introduced for verification. The experimental results demonstrate that the improved gorilla search algorithm significantly enhances convergence speed and optimization accuracy, and exhibits good robustness. The SCAGTO algorithm demonstrates certain solution advantages in optimizing the pressure vessel design problem and welded beam design problem, verifying the superior optimization ability and engineering practicality of the SCAGTO algorithm.

4.
Biomimetics (Basel) ; 8(3)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37504194

ABSTRACT

The features of the kernel extreme learning machine-efficient processing, improved performance, and less human parameter setting-have allowed it to be effectively used to batch multi-label classification tasks. These classic classification algorithms must at present contend with accuracy and space-time issues as a result of the vast and quick, multi-label, and concept drift features of the developing data streams in the practical application sector. The KELM training procedure still has a difficulty in that it has to be repeated numerous times independently in order to maximize the model's generalization performance or the number of nodes in the hidden layer. In this paper, a kernel extreme learning machine multi-label data classification method based on the butterfly algorithm optimized by particle swarm optimization is proposed. The proposed algorithm, which fully accounts for the optimization of the model generalization ability and the number of hidden layer nodes, can train multiple KELM hidden layer networks at once while maintaining the algorithm's current time complexity and avoiding a significant number of repeated calculations. The simulation results demonstrate that, in comparison to the PSO-KELM, BBA-KELM, and BOA-KELM algorithms, the PSOBOA-KELM algorithm proposed in this paper can more effectively search the kernel extreme learning machine parameters and more effectively balance the global and local performance, resulting in a KELM prediction model with a higher prediction accuracy.

5.
Biomimetics (Basel) ; 8(2)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37218772

ABSTRACT

A TDOA/AOA hybrid location algorithm based on the crow search algorithm optimized by particle swarm optimization is proposed to address the challenge of solving the nonlinear equation of time of arrival (TDOA/AOA) location in the non-line-of-sight (NLoS) environment. This algorithm keeps its optimization mechanism on the basis of enhancing the performance of the original algorithm. To obtain a better fitness value throughout the optimization process and increase the algorithm's optimization accuracy, the fitness function based on maximum likelihood estimation is modified. In order to speed up algorithm convergence and decrease needless global search without compromising population diversity, an initial solution is simultaneously added to the starting population location. Simulation findings demonstrate that the suggested method outperforms the TDOA/AOA algorithm and other comparable algorithms, including Taylor, Chan, PSO, CPSO, and basic CSA algorithms. The approach performs well in terms of robustness, convergence speed, and node positioning accuracy.

6.
Biomimetics (Basel) ; 8(2)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37092417

ABSTRACT

In wireless sensor networks, each sensor node has a finite amount of energy to expend. The clustering method is an efficient way to deal with the imbalance in node energy consumption. A topology optimization technique for wireless sensor networks based on the Cauchy variation optimization crow search algorithm (CM-CSA) is suggested to address the issues of rapid energy consumption, short life cycles, and unstable topology in wireless sensor networks. At the same time, a clustering approach for wireless sensor networks based on the enhanced Cauchy mutation crow search algorithm is developed to address the issue of the crow algorithm's sluggish convergence speed and ease of falling into the local optimum. It utilizes the Cauchy mutation to improve the population's variety and prevent settling for the local optimum, as well as to broaden the range of variation and the capacity to carry out global searches. When the leader realizes he is being followed, the discriminative probability is introduced to improve the current person's location update approach. According to the simulation findings, the suggested CM-CSA algorithm decreases the network's average energy consumption by 66.7%, 50%, and 33.3% and enhances its connectivity performance by 52.9%, 37.6%, and 23.5% when compared to the PSO algorithm, AFSA method, and basic CSA algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...