Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.724
Filter
1.
Ann Surg Oncol ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824192

ABSTRACT

BACKGROUND: This study was designed to develop an innovative classification and guidance system for renal hilar tumors and to assess the safety and effectiveness of robot-assisted partial nephrectomy (RAPN) for managing such tumors. METHODS: A total of 179 patients undergoing RAPN for renal hilar tumors were retrospectively reviewed. A novel classification system with surgical techniques was introduced and the perioperative features, tumor characteristics, and the efficacy and safety of RAPN were compared within subgroups. RESULTS: We classified the tumors according to our novel system as follows: 131 Type I, 35 Type II, and 13 Type III. However, Type III had higher median R.E.N.A.L., PADUA, and ROADS scores compared with the others (all p < 0.001), indicating increased operative complexity and higher estimated blood loss [180.00 (115.00-215.00) ml]. Operative outcomes revealed significant disparities between Type III and the others, with longer operative times [165.00 (145.00-200.50) min], warm ischemia times [24.00 (21.50-30.50) min], tumor resection times [13.00 (12.00-15.50) min], and incision closure times [22.00 (20.00-23.50) min] (all p < 0.005). Postoperative outcomes also showed significant differences, with longer durations of drain removal (77.08 ± 18.16 h) and hospitalization for Type III [5.00 (5.00-6.00) d] (all p < 0.05). Additionally, Type I had a larger tumor diameter than the others (p = 0.009) and pT stage differed significantly between the subtypes (p = 0.020). CONCLUSIONS: The novel renal hilar tumor classification system is capable of differentiating the surgical difficulty of RAPN and further offers personalized surgical steps tailored to each specific classification. It provides a meaningful tool for clinical practice.

2.
Microbiol Spectr ; : e0349023, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690913

ABSTRACT

The Okinawa Trough (OT) is a back-arc basin with a wide distribution of active cold seep systems. However, our understanding of the metabolic function of microbial communities in the cold seep sediments of the OT remains limited. In this study, we investigated the vertical profiles of functional genes involved in methane, nitrogen, and sulphur cycling in the cold seep sediments of the OT. Furthermore, we explored the possible coupling mechanisms between these biogeochemical cycles. The study revealed that the majority of genes associated with the nitrogen and sulphur cycles were most abundant in the surface sediment layers. However, only the key genes responsible for sulphur disproportionation (sor), nitrogen fixation (nifDKH), and methane metabolism (mcrABG) were more prevalent within sulfate-methane transition zone (SMTZ). Significant positive correlations (P < 0.05) were observed between functional genes involved in sulphur oxidation, thiosulphate disproportionation with denitrification, and dissimilatory nitrate reduction to ammonium (DNRA), as well as between AOM/methanogenesis and nitrogen fixation, and between sulphur disproportionation and AOM. A genome of Filomicrobium (class Alphaproteobacteria) has demonstrated potential in chemoautotrophic activities, particularly in coupling DNRA and denitrification with sulphur oxidation. Additionally, the characterized sulfate reducers such as Syntrophobacterales have been found to be capable of utilizing nitrate as an electron acceptor. The predominant methanogenic/methanotrophic groups in the OT sediments were identified as H2-dependent methylotrophic methanogens (Methanomassiliicoccales and Methanofastidiosales) and ANME-1a. This study offered a thorough understanding of microbial ecosystems in the OT cold seep sediments, emphasizing their contribution to nutrient cycling.IMPORTANCEThe Okinawa Trough (OT) is a back-arc basin formed by extension within the continental lithosphere behind the Ryukyu Trench arc system. Cold seeps are widespread in the OT. While some studies have explored microbial communities in OT cold seep sediments, their metabolic potential remains largely unknown. In this study, we used metagenomic analysis to enhance comprehension of the microbial community's role in nutrient cycling and proposed hypotheses on the coupling process and mechanisms involved in biogeochemical cycles. It was revealed that multiple metabolic pathways can be performed by a single organism or microbes that interact with each other to carry out various biogeochemical cycling. This data set provided a genomic road map on microbial nutrient cycling in OT sediment microbial communities.

3.
Acta Diabetol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691241

ABSTRACT

AIMS: Accumulating evidences indicate that abnormalities in tubular lipid metabolism play a crucial role in the development of diabetic kidney disease (DKD). We aim to identify novel lipid metabolism-related genes associated with tubular injury in DKD by utilizing bioinformatics approaches. METHODS: Differentially expressed genes (DEGs) between control and DKD tubular tissue samples were screened from the Gene Expression Omnibus (GEO) database, and then were intersected with lipid metabolism-related genes. Hub genes were further determined by combined weighted gene correlation network analysis (WGCNA) and protein-protein interaction (PPI) network. We performed enrichment analysis, immune analysis, clustering analysis, and constructed networks between hub genes and miRNAs, transcription factors and small molecule drugs. Receiver operating characteristic (ROC) curves were employed to evaluate the diagnostic efficacy of hub genes. We validated the relationships between hub genes and DKD with external datasets and our own clinical samples. RESULTS: There were 5 of 37 lipid metabolism-related DEGs identified as hub genes. Enrichment analysis demonstrated that lipid metabolism-related DEGs were enriched in pathways such as peroxisome proliferator-activated receptors (PPAR) signaling and pyruvate metabolism. Hub genes had potential regulatory relationships with a variety of miRNAs, transcription factors and small molecule drugs, and had high diagnostic efficacy. Immune infiltration analysis revealed that 13 immune cells were altered in DKD, and hub genes exhibited significant correlations with a variety of immune cells. Through clustering analysis, DKD patients could be classified into 3 immune subtypes and 2 lipid metabolism subtypes, respectively. The tubular expression of hub genes in DKD was further verified by other external datasets, and immunohistochemistry (IHC) staining showed that except ACACB, the other 4 hub genes (LPL, AHR, ME1 and ALOX5) exhibited the same results as the bioinformatics analysis. CONCLUSION: Our study identified several key lipid metabolism-related genes (LPL, AHR, ME1 and ALOX5) that might be involved in tubular injury in DKD, which provide new insights and perspectives for exploring the pathogenesis and potential therapeutic targets of DKD.

4.
Mol Biol Cell ; : mbcE24020073, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696259

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition, cancer cell migration, and invasion. Targeting TGF-ß signaling is a promising therapeutic approach, but non-specific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-ß signaling transduction, as a potential target for cancer therapy. Through a phase-separated condensate-aided biomolecular interaction system, we identified verteporfin (VP) as a small-molecule inhibitor that specifically targets the Smad2/3-Smad4 interaction. VP effectively disrupted the interaction between Smad2/3 and Smad4 and thereby inhibited canonical TGF-ß signaling, but not the interaction between Smad1 and Smad4 in BMP signaling. Furthermore, VP exhibited inhibitory effects on TGF-ß-induced epithelial-mesenchymal transition and cell migration. Our findings indicate a novel approach to develop protein-protein interaction inhibitors of the canonical TGF-ß signaling pathway for treatments of related diseases.

5.
J Cancer ; 15(10): 3024-3033, 2024.
Article in English | MEDLINE | ID: mdl-38706890

ABSTRACT

Background: This study aimed to investigate the safety and efficacy of preoperative targeted immunotherapy followed by surgical resection for hepatocellular carcinoma (HCC) patients with macrovascular invasion. Method: Clinical information of HCC patients with macrovascular invasion was collected from four medical centers. These patients were divided into two cohorts: the upfront surgery group (n=40) and the neoadjuvant group (n=22). Comparisons between the two groups were made with appropriate statistical methods. Results: HCC Patients with macrovascular invasion in the neoadjuvant group were associated with increased incidence of postoperative ascites (72.73% vs. 37.5%, P=0.008), but shorter postoperative hospital stay (10 days vs. 14 days, P=0.032). Furthermore, targeted immunotherapy followed by surgical resection significantly reduced the postoperative recurrence rate at both 3 months and 1 year (9% versus 28.9%, 32.1% versus 67.9%, respectively; P=0.018), but increased the postoperative nononcologic mortality rate within 1 year (20.1% vs. 2.8%; P= 0.036). Conclusion: For HCC patients with macrovascular invasion, preoperative targeted immunotherapy significantly decreased the postoperative tumor recurrence rate while maintaining relative safety, but such a treatment may also result in chronic liver damage and increased risk of nononcologic mortality.

7.
Nat Commun ; 15(1): 4162, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755139

ABSTRACT

The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.


Subject(s)
COVID-19 , Furin , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Glycosylation , Furin/metabolism , Furin/genetics , COVID-19/virology , COVID-19/metabolism , HEK293 Cells , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Animals , Chlorocebus aethiops , Polypeptide N-acetylgalactosaminyltransferase
8.
Nat Med ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778212

ABSTRACT

Treatment with anti-programmed cell death protein 1 (PD-1) therapy and chemotherapy prolongs the survival of patients with unresectable advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma. The benefit from anti-PD-1 therapy is enriched in patients with programmed cell death 1 ligand 1 (PD-L1) combined positive score (CPS)-positive or CPS-high tumors compared with patients with PD-L1 CPS-negative or CPS-low tumors. In this phase 1b/2 study, we evaluated the efficacy and safety of cadonilimab, a bispecific antibody targeting PD-1 and cytotoxic T-lymphocyte antigen-4, plus chemotherapy as first-line treatment in patients with human epidermal growth factor receptor 2-negative unresectable advanced or metastatic gastric or GEJ adenocarcinoma. The primary endpoint was the recommended phase 2 dose (RP2D) for phase 1b and the objective response rate for phase 2. Secondary endpoints included disease control rate, duration of response, time to response, progression-free survival, overall survival (OS) and safety. The primary endpoint was met. No dose-limiting toxicities were observed during dose escalation in phase 1b; the recommended phase 2 dose was determined as 6 mg kg-1 every 2 weeks. The objective response rate was 52.1% (95% confidence interval (CI) = 41.6-62.5), consisting of complete and partial responses in 4.3% and 47.9% of patients, respectively. The median duration of response, progression-free survival and OS were 13.73 months (95% CI = 7.79-19.12), 8.18 months (95% CI = 6.67-10.48) and 17.48 months (95% CI = 12.35-26.55), respectively. The median OS in patients with a PD-L1 CPS ≥ 5 was 20.32 months (95% CI = 4.67-not estimable); in patients with a PD-L1 CPS < 1, the median OS reached 17.64 months (95% CI = 11.63-31.70). The most common treatment-related grade 3 or higher adverse events were decreased neutrophil count (19.1%), decreased platelet count (16.0%), anemia (12.8%) and decreased leukocyte count (8.5%). No new safety signal was identified. The current regimen showed promising clinical activity and manageable safety in patients with gastric or GEJ adenocarcinoma regardless of PD-L1 expression. Chinadrugtrials.org.cn registration: CTR20182027.

9.
Cancer ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781433

ABSTRACT

BACKGROUND: Effective systemic therapy remains limited for advanced esophageal squamous cell carcinoma (ESCC) and hepatocellular carcinoma (HCC), particularly after prior failed treatment with immune checkpoint inhibitors (ICIs). Theoretically, a combination of tyrosine kinase inhibitors (TKIs) with ICIs may restore immunotherapy sensitivity. METHODS: In this phase 1b study, patients received AL2846, an antiangiogenic TKI with multiple targets (c-MET, VEGFR1, c-KIT, Axl, RET, KDR, and VEGFR3), in combination with an anti-PD-L1 antibody (TQB2450) until disease progression, intolerable toxicity, death, or discontinuation for any cause. The primary end points included overall response rate (ORR) and safety, with secondary end points encompassing progression-free survival (PFS), overall survival (OS), disease control rate (DCR), and duration of response. RESULTS: Between November 2021 and September 2022, 18 patients with ESCC and 15 patients with HCC, whose ORR was 11.1% (95% confidence interval [CI], 3.1%-32.8%) and 0%, respectively, were enrolled. Adverse events (AEs) of any grade and treatment-related AEs were documented in 32 patients (97.0%) and 31 patients (93.9%), respectively. Grade 3 or higher AEs were observed in 10 patients (30.3%), with vomiting (6.1%) and infectious pneumonia (9.1%) being the most prevalent. Median PFS and OS values were 3.22 months (95% CI, 1.35-5.68 months) and 5.98 months (95% CI, 3.71-8.87 months), respectively, in patients with ESCC, and 5.55 months (95% CI, 2.66 months to not evaluable [NE]) and 16.72 months (95% CI, 4.86 months to NE), respectively, in patients with HCC. The DCRs were 66.7% (95% CI, 43.75%-83.72%) in patients with ESCC and 73.3% (95% CI, 48.05%-89.10%) in patients with HCC. CONCLUSIONS: Combined TQB2450 and AL2846 therapy exhibited a favorable safety profile in immunotherapy-refractory patients with advanced ESCC and HCC.

10.
Redox Biol ; 73: 103195, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38781731

ABSTRACT

Accumulating oxidative damage is a primary driver of ovarian reserve decline along with aging. However, the mechanism behind the imbalance in reactive oxygen species (ROS) is not yet fully understood. Here we investigated changes in iron metabolism and its relationship with ROS disorder in aging ovaries of mice. We found increased iron content in aging ovaries and oocytes, along with abnormal expression of iron metabolic proteins, including heme oxygenase 1 (HO-1), ferritin heavy chain (FTH), ferritin light chain (FTL), mitochondrial ferritin (FTMT), divalent metal transporter 1 (DMT1), ferroportin1(FPN1), iron regulatory proteins (IRP1 and IRP2) and transferrin receptor 1 (TFR1). Notably, aging oocytes exhibited enhanced ferritinophagy and mitophagy, and consistently, there was an increase in cytosolic Fe2+, elevated lipid peroxidation, mitochondrial dysfunction, and augmented lysosome activity. Additionally, the ovarian expression of p53, p21, p16 and microtubule-associated protein tau (Tau) were also found to be upregulated. These alterations could be phenocopied with in vitro Fe2+ administration in oocytes from 2-month-old mice but were alleviated by deferoxamine (DFO). In vivo application of DFO improved ovarian iron metabolism and redox status in 12-month-old mice, and corrected the alterations in cytosolic Fe2+, ferritinophagy and mitophagy, as well as related degenerative changes in oocytes. Thereby in the whole, DFO delayed the decline in ovarian reserve and significantly increased the number of superovulated oocytes with reduced fragmentation and aneuploidy. Together, our findings suggest that aging-related disturbance in ovarian iron homeostasis contributes to excessive ROS production and that iron chelation may improve ovarian redox status, and efficiently delay the decline in ovarian reserve and oocyte quality in aging mice. These data propose a novel intervention strategy for preserving the ovarian reserve function in elderly women.

11.
Nat Commun ; 15(1): 4362, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778029

ABSTRACT

Light-induced spin currents with the faster response is essential for the more efficient information transmission and processing. Herein, we systematically explore the effect of light illumination energy and direction on the light-induced spin currents in the W/Y3Fe5O12 heterojunction. Light-induced spin currents can be clearly categorized into two types. One is excited by the low light intensity, which mainly involves the photo-generated spin current from spin photovoltaic effect. The other is caused by the high light intensity, which is the light-thermally induced spin current and mainly excited by spin Seebeck effect. Under low light-intensity illumination, light-thermally induced temperature gradient is very small so that spin Seebeck effect can be neglected. Furthermore, the mechanism on spin photovoltaic effect is fully elucidated, where the photo-generated spin current in Y3Fe5O12 mainly originates from the process of spin precession induced by photons. These findings provide some deep insights into the origin of light-induced spin current.

12.
Sci Rep ; 14(1): 11682, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778225

ABSTRACT

To explore altered patterns of static and dynamic functional brain network connectivity (sFNC and dFNC) in Primary angle-closure glaucoma (PACG) patients. Clinically confirmed 34 PACG patients and 33 age- and gender-matched healthy controls (HCs) underwent evaluation using T1 anatomical and functional MRI on a 3 T scanner. Independent component analysis, sliding window, and the K-means clustering method were employed to investigate the functional network connectivity (FNC) and temporal metrics based on eight resting-state networks. Differences in FNC and temporal metrics were identified and subsequently correlated with clinical variables. For sFNC, compared with HCs, PACG patients showed three decreased interactions, including SMN-AN, SMN-VN and VN-AN pairs. For dFNC, we derived four highly structured states of FC that occurred repeatedly between individual scans and subjects, and the results are highly congruent with sFNC. In addition, PACG patients had a decreased fraction of time in state 3 and negatively correlated with IOP (p < 0.05). PACG patients exhibit abnormalities in both sFNC and dFNC. The high degree of overlap between static and dynamic results suggests the stability of functional connectivity networks in PACG patients, which provide a new perspective to understand the neuropathological mechanisms of optic nerve damage in PACG patients.


Subject(s)
Glaucoma, Angle-Closure , Magnetic Resonance Imaging , Humans , Glaucoma, Angle-Closure/physiopathology , Glaucoma, Angle-Closure/diagnostic imaging , Female , Male , Middle Aged , Aged , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Case-Control Studies , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology
13.
Cell Regen ; 13(1): 11, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780677

ABSTRACT

The family of secreted dimeric proteins known as the Transforming Growth Factor-ß (TGF-ß) family plays a critical role in facilitating intercellular communication within multicellular animals. A recent symposium on TGF-ß Biology - Signaling, Development, and Diseases, held on December 19-21, 2023, in Hangzhou, China, showcased some latest advances in our understanding TGF-ß biology and also served as an important forum for scientific collaboration and exchange of ideas. More than twenty presentations and discussions at the symposium delved into the intricate mechanisms of TGF-ß superfamily signaling pathways, their roles in normal development and immunity, and the pathological conditions associated with pathway dysregulation.

14.
Sci Rep ; 14(1): 10859, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740865

ABSTRACT

Vitamin A plays a pivotal role in health, particularly in regulating fat metabolism. Despite its significance, research into the direct relationship between vitamin A levels and obesity, especially among adolescents, is sparse. This study aims to explore this association within the adolescent population in the United States. This cross-sectional study analyzed the National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2006, with 8218 participants. The levels of vitamin A in the serum were determined based on utilizing high-performance liquid chromatography with photodiode array detection. The relationship between serum vitamin A concentrations and body mass index (BMI) was evaluated using weighted multiple linear regression models, incorporating subgroup analyses by sex and race/ethnicity to provide nuanced insights. A positive correlation was observed between serum vitamin A levels and BMI, with BMI increasing progressively across vitamin A quartiles (P < 0.001). Using the lowest quartile of serum vitamin A as a reference, the BMI of the highest quartile of serum vitamin A was 1.236 times higher (95% CI 0.888, 1.585). Subgroup analyses revealed that this positive association persisted across different genders and racial/ethnic groups (P < 0.001). Notably, smooth curve fitting and saturation threshold analysis unveiled an inverted U-shaped relationship between serum vitamin A and BMI among female adolescents, non-Hispanic Whites, Mexican Americans, and other races/ethnicities groups. Our study substantiates the association between serum vitamin A levels and the risk of obesity/overweight status in adolescents. The findings suggest the potential serum vitamin A is an early biomarker for identifying obesity risk, although further studies are needed to determine to clarify its role as a contributing factor to obesity. This study contributes to the understanding of nutritional influences on adolescent obesity, highlighting the need for targeted interventions based on serum biomarkers.


Subject(s)
Body Mass Index , Nutrition Surveys , Vitamin A , Humans , Adolescent , Female , Male , Vitamin A/blood , Cross-Sectional Studies , United States/epidemiology , Obesity/blood , Obesity/epidemiology , Child
15.
Biomaterials ; 309: 122626, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38795524

ABSTRACT

The development of manganese oxide-based chemodynamic immunotherapy is emerging as a key strategy against solid tumors. However, the limited efficacy of nanoplatform in inducing efficient tumor therapeutic effects and creating the prominent antitumor immune responses remains a crucial issue. In this study, we construct a novel multifunctional biomimetic nanovaccine comprising manganese oxide-loaded poly(2-diisopropylaminoethyl methacrylate) (MP) nanoparticles and a coating layer of hybrid cell membrane (RHM) derived from manganese oxide-remodeled 4T1 cells and dendritic cells (DCs) (collectively called MP@RHM) for combination chemodynamic immunotherapy. Compared with the nanovaccines coated with the single cell membrane, the MP@RHM nanovaccine highly efficiently activates both DCs and T cells to boost tumor-specific T cell, owing to the synergistic effects of abundant damage-associated molecular patterns, Mn2+, and T cell-stimulating moieties. Upon peritumoral injection, the MP@RHM nanovaccine targets both the tumor site for focused chemodynamic therapy and the lymph nodes for robust tumor-specific T cell priming, thereby achieving highly efficient chemodynamic immunotherapy. Moreover, as a preventive cancer nanovaccine, MP@RHM generates strong immunological memory to inhibit postoperative tumor metastasis and recurrence. Our study findings highlight a promising approach to construct a multifunctional biomimetic nanovaccine for personalized chemodynamic immunotherapy against solid tumors.


Subject(s)
Cancer Vaccines , Immunotherapy , Manganese Compounds , Oxides , T-Lymphocytes , Manganese Compounds/chemistry , Animals , Cancer Vaccines/immunology , Oxides/chemistry , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Immunotherapy/methods , Mice , Nanoparticles/chemistry , Mice, Inbred BALB C , Female , Dendritic Cells/immunology , Dendritic Cells/drug effects , Biomimetic Materials/chemistry , Neoplasms/therapy , Neoplasms/immunology , Nanovaccines
16.
Eur J Med Chem ; 272: 116477, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38733884

ABSTRACT

The cellular-mesenchymal epithelial transition factor (c-Met) is a receptor tyrosine kinase (RTK) located on the 7q31 locus encoding the Met proto-oncogene and plays a critical role in regulating cell proliferation, metastasis, differentiation, and apoptosis through various signaling pathways. However, its aberrant activation and overexpression have been implicated in many human cancers. Therefore, c-Met is a promising target for cancer treatment. However, the anticancer effect of selective single-targeted drugs is limited due to the complexity of the signaling system and the involvement of different proteins and enzymes. After inhibiting one pathway, signal molecules can be transmitted through other pathways, resulting in poor efficacy of single-targeted drug therapy. Dual inhibitors that simultaneously block c-Met and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, We introduced c-Met kinase and the synergism between c-Met and other anti-tumor targets, then dual-target inhibitors based on c-Met for the treatment of cancers were summarized and their design concepts and structure-activity relationships (SARs) were discussed elaborately, providing a valuable insight for the further development of novel c-Met-based dual inhibitors.


Subject(s)
Antineoplastic Agents , Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Structure-Activity Relationship , Molecular Structure , Cell Proliferation/drug effects , Animals
17.
Adv Mater ; : e2403385, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769003

ABSTRACT

Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm-3 under an ultrahigh scan rate of 1000 mV s-1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1T'-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm-3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.

18.
Int J Med Sci ; 21(7): 1204-1212, 2024.
Article in English | MEDLINE | ID: mdl-38818479

ABSTRACT

The mitochondrial unfolded protein response (UPRmt) is a pivotal cellular mechanism that ensures mitochondrial homeostasis and cellular survival under stress conditions. This study investigates the role of UPRmt in modulating the response of nasopharyngeal carcinoma cells to cisplatin-induced stress. We report that the inhibition of UPRmt via AEB5F exacerbates cisplatin cytotoxicity, as evidenced by increased lactate dehydrogenase (LDH) release and apoptosis, characterized by a surge in TUNEL-positive cells. Conversely, the activation of UPRmt with oligomycin attenuates these effects, preserving cell viability and reducing apoptotic markers. Immunofluorescence assays reveal that UPRmt activation maintains mitochondrial membrane potential and ATP production in the presence of cisplatin, countering the rise in reactive oxygen species (ROS) and inhibiting caspase-9 activation. These findings suggest that UPRmt serves as a cytoprotective mechanism in cancer cells, mitigating cisplatin-induced mitochondrial dysfunction and apoptosis. The data underscore the therapeutic potential of modulating UPRmt to improve the efficacy and reduce the side effects of cisplatin chemotherapy. This study provides a foundation for future research on the exploitation of UPRmt in cancer treatment, with the aim of enhancing patient outcomes by leveraging the cellular stress response pathways.


Subject(s)
Apoptosis , Cisplatin , Mitochondria , Reactive Oxygen Species , Unfolded Protein Response , Humans , Unfolded Protein Response/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cisplatin/pharmacology , Cisplatin/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Antineoplastic Agents/pharmacology , Cell Survival/drug effects
19.
Braz J Med Biol Res ; 57: e13437, 2024.
Article in English | MEDLINE | ID: mdl-38808889

ABSTRACT

Clinical studies have found that neonatal sevoflurane exposure can increase the risk of cognitive dysfunction. However, recent studies have found that it can exhibit neuroprotective effects in some situations. In this study, we aimed to explore the effects of sevoflurane neonatal exposure in rats. A total of 144 rat pups (72 males and 72 females) were assigned to six groups and separately according to sevoflurane exposure of different times on the seventh day after birth. Blood gas analysis and western blot detection in the hippocampus were conducted after exposure. The Morris water maze test was conducted on the 32nd to 38th days after birth. The expression of PSD95 and synaptophysin in the hippocampus was detected after the Morris water maze test. We found that neonatal exposure to sevoflurane promoted apoptosis in the hippocampus, and Bax and caspase-3 were increased in a dose-dependent manner. The 2-h exposure had the greatest effects on cognitive dysfunction. However, with the extension of exposure time to 6 h, the effects on cognitive function were partly compensated. In addition, sevoflurane exposure decreased synaptogenesis in the hippocampus. However, as the exposure time was extended, the suppression of synaptogenesis was attenuated. In conclusion, neonatal sevoflurane exposure exhibited duration-dependent effects on cognitive function via Bax-caspase-3-dependent apoptosis and bidirectional effects on synaptogenesis in rats.


Subject(s)
Animals, Newborn , Cognition , Hippocampus , Sevoflurane , Sevoflurane/pharmacology , Animals , Female , Male , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Cognition/drug effects , Time Factors , Maze Learning/drug effects , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Apoptosis/drug effects , Sex Factors , Rats, Sprague-Dawley , Methyl Ethers/pharmacology , Blotting, Western , Blood Gas Analysis , Cognitive Dysfunction/chemically induced
20.
Methods Mol Biol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38647862

ABSTRACT

The intestine comprises distinct segments, each characterized by unique cell populations and functions. Intestinal organoids faithfully replicate the cellular composition and functions of the intestine. Over the past decade, the organoid model has garnered considerable attention for its application in investigation of organ development, renewal and functional performance. While the organoid culture systems for mouse small intestine and human large intestine have widely adopted, a comparison summary for different segments of the human or mouse intestine is lacking. In this study, we present a systematically detailed culture methodology for intestinal organoids, encompassing both the small intestine and the large intestine from humans or mice. This method provides a robust in vitro tool for intestinal research, and expands the possible clinical application of organoids.

SELECTION OF CITATIONS
SEARCH DETAIL
...