Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34271194

ABSTRACT

The purpose of the study was to clone the sequences of myogenic regulatory factors in Acipenser dabryanus and explore the changes in their expression during starvation and refeeding in A. dabryanus muscle. One hundred twenty fish (60.532 ± 0.284 g) were randomly assigned to four groups (fasted for 0, 3, 7 or 14 d and then refed for 14 d). Our predictions showed that the coding sequences of myod1, myf5, myog and myf6 in A. dabryanus encoded 275, 248, 248 and 243 amino acids, respectively, and the expression of the four genes was the highest in muscle. During fasting, the expression of myod1 in muscle was significantly decreased in the 14 d group. The expressions of myf5 and myf6 were increased significantly at first and then decreased with prolonged starvation time. The expression of myog in the 14 d group was significantly decreased compared with other groups (P < 0.05). During refeeding, the highest values of myod1 and myf6 expression were found in the 3 d group (P < 0.05).The expressions of myf5 and myog in 0 d and 3 d group were significantly higher than those in 7 d and 14 d group (P < 0.05). These results indicate that myogenic regulatory factors (MRFs) play important roles in muscle growth and development in A. dabryanus. The inhibition of long-term starvation (14 d) on the expression of myogenic regulatory factors is probably one of the reasons why it can not achieve full compensation for growth.


Subject(s)
Feeding Behavior , Fish Proteins/metabolism , Gene Expression Regulation , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myogenic Regulatory Factors/metabolism , Starvation , Animals , Fish Proteins/genetics , Fishes , Muscle Proteins/genetics , Myogenic Regulatory Factors/genetics , Tissue Distribution
2.
Br J Nutr ; 126(5): 695-707, 2021 09 14.
Article in English | MEDLINE | ID: mdl-33143764

ABSTRACT

The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.


Subject(s)
Appetite , Fishes , Growth Hormone , Insulin-Like Growth Factor I , Starvation , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Digestion , Fishes/growth & development , Fishes/physiology , Insulin-Like Growth Factor I/genetics , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...