Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 13(8): 8977-8985, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31390182

ABSTRACT

Self-healing technology promises a generation of innovation in cross-cutting subjects ranging from electronic skins, to wearable electronics, to point-of-care biomedical sensing modules. Recently, scientists have successfully pulled off significant advances in self-healing components including sensors, energy devices, transistors, and even integrated circuits. Lasers, one of the most important light sources, integrated with autonomous self-healability should be endowed with more functionalities and opportunities; however, the study of self-healing lasers is absent in all published reports. Here, the soft and self-healable random laser (SSRL) is presented. The SSRL can not only endure extreme external strain but also withstand several cutting/healing test cycles. Particularly, the damaged SSRL enables its functionality to be restored within just few minutes without the need of additional energy, chemical/electrical agents, or other healing stimuli, truly exhibiting a supple yet robust laser prototype. It is believed that SSRL can serve as a vital building block for next-generation laser technology as well as follow-on self-healing optoelectronics.


Subject(s)
Biosensing Techniques , Skin/chemistry , Wearable Electronic Devices , Wound Healing , Humans , Lasers , Point-of-Care Systems , Polymers/chemistry
2.
ACS Nano ; 12(9): 9596-9607, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30199626

ABSTRACT

Visible blind near-infrared (NIR) photodetection is essential when it comes to weapons used by military personnel, narrow band detectors used in space navigation systems, medicine, and research studies. The technological field of filterless visible blind, NIR omnidirectional photodetection and wearability is at a preliminary stage. Here, we present a filterless and lightweight design for a visible blind and wearable NIR photodetector capable of harvesting light omnidirectionally. The filterless NIR photodetector comprises the integration of distinct features of lanthanide-doped upconversion nanoparticles (UCNPs), graphene, and micropyramidal poly(dimethylsiloxane) (PDMS) film. The lanthanide-doped UCNPs are designed such that the maximum narrow band detection of NIR is easily accomplished by the photodetector even in the presence of visible light sources. Especially, the 4f n electronic configuration of lanthanide dopant ions provides for a multilevel hierarchical energy system that provides for longer lifetime of the excited states for photogenerated charge carriers to transfer to the graphene layer. The graphene layer can serve as an outstanding conduction path for photogenerated charge carrier transfer from UCNPs, and the flexible micropyramidal PDMS substrate provides an excellent platform for omnidirectional NIR light detection. Owing to these advantages, a photoresponsivity of ∼800 AW-1 is achieved by the NIR photodetector, which is higher than the values ever reported by UCNPs-based photodetectors. In addition, the photodetector is stretchable, durable, and transparent, making it suitable for next-generation wearable optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...