Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Front Plant Sci ; 13: 1044637, 2022.
Article in English | MEDLINE | ID: mdl-36570945

ABSTRACT

Introduction: With increasing forest areas under management, dynamics of managed stands have gained more attention by forest managers and practitioners. Improved understanding on how trees and forest stands would respond to different disturbances is required to predict the dynamics of managed stand.s. Partial mortality commonly occurs in stand development, and different response patterns of trees and stands to partial mortality would govern stand dynamics. Methods: To investigate the possible response patterns using existing knowledge of growth and yield relationships, we developed TreeCG model, standing for Tree's Compensatory Growth, a state-dependent individual tree-based forest growth model that simulates the compensatory growth of trees after experiencing a partial mortality. The mechanism behind the simulation is the redistribution of resources, including nutrients and space, freed from died trees to surviving trees. The developed new algorithm simplified the simulations of annual growth increments of individual trees over a long period of stand development. Results: The model was able to reproduce the forest growth patterns displayed in long-term precommercial thinning experiments. The simulated forest growth displayed the process of compensatory growth from under compensation, to compensation-induced-equality, and to overcompensation over time. Discussion: Our model can simulate stand growth trajectories after different partial harvest regimes at different times and intensities, thus support decisions in best partial harvest strategies. This generic model can be refined with given tree species and specific site conditions to predict stand dynamics after given partial mortality for any jurisdictions under management. The simulation reassembles growth trajectories of natural stands when no thinning is conducted.

2.
Sci Rep ; 9(1): 14201, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578394

ABSTRACT

The determination of characteristic flow velocity is a hydrodynamic problem needs to be solved in the application of geomorphologic instantaneous unit hydrograph (GIUH) for runoff simulation in areas with no or limited data. In this study, 120 watersheds are collected to construct a regression model; 85 of these basins are used for regression analysis, and the 35 remaining basins are utilized to verify the feasibility of the constructed model. Random forest algorithm is applied to screen out important geomorphologic factors from the 16 extracted factors that may affect flow velocity. Multivariate regression is used to establish the numerical relationship between velocity and the selected factors. Sensitivity analysis of each adopted factor in the constructed model is conducted using the LH-OAT method. The rationality and feasibility of the regression model are validated by comparing the flow velocity calculation with a previous approach, which is also calculated based on geomorphological parameters. Subsequently, the runoff simulation based on the GIUH model is evaluated using the proposed technique. Results demonstrate that the proposed formula possesses high fitting accuracy and can be easily used to calculate flow velocity and generate GIUH.

3.
Sci Rep ; 7: 44396, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28295056

ABSTRACT

Non-emissive triplet excited states in devices that undergo thermally activated delayed fluorescence (TADF) can be up-converted to singlet excited states via reverse intersystem crossing (RISC), which leads to an enhanced electroluminescence efficiency. Exciton-based fluorescence devices always exhibit a positive magneto-electroluminescence (MEL) because intersystem crossing (ISC) can be suppressed effectively by an external magnetic field. Conversely, TADF devices should exhibit a negative MEL because RISC is suppressed by the external magnetic field. Intriguingly, we observed a positive MEL in TADF devices. Moreover, the sign of the MEL was either positive or negative, and depended on experimental conditions, including doping concentration, current density and temperature. The MEL observed from our TADF devices demonstrated that ISC in the host material and RISC in the guest material coexisted. These competing processes were affected by the experimental conditions, which led to the sign change of the MEL. This work gives important insight into the energy transfer processes and the evolution of excited states in TADF devices.

4.
Phys Chem Chem Phys ; 18(44): 30733-30739, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27792226

ABSTRACT

The effects of a magnetic field on the dissociation of triplet excitons by free charges (TCI) are well understood. However, the magneto-conductance (MC) characteristics of trapped triplet-polaron interactions (TtPI) and triplet-trapped polaron interactions (TPtI) within organic light emitting diodes (OLEDs) are not well understood. We have studied these interactions in an anthracene-based OLED. The electroluminescence spectra, current-voltage characteristics and magneto-electroluminescence indicated that the anthracene layer contained many defects that could trap either triplet excitons or polarons, which led to TPtI and TtPI. The MC curves at low temperature exhibited a complex line shape, which indicated that intersystem crossing, TPtI, TtPI, and TCI occurred simultaneously in the device. The individual MC characteristics of TPtI and TtPI were extracted from temperature dependant MC curves by fitting them to three empirical Lorentzian functions and one non-Lorentzian function. The MC of TPtI exhibited a negative sign, while that of TtPI exhibited a positive one, with characteristic magnetic fields (B0) of ∼10.5 and ∼15 mT, respectively. Both processes were prominent below 150 K and weakened with increasing temperature. TPtI was neglected above 200 K, while TtPI was observed even at ambient temperature. These results add significant insight into the magnetic field effects on triplet-polaron interactions.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(1): 157-61, 2014 Jan.
Article in Chinese | MEDLINE | ID: mdl-24783552

ABSTRACT

Bloomfield has pointed out that the kink structure occurs for sharp bending during DNA condensation process, until now, which has not been proved by experiments. Using UV Spectrophotometer, the effects of fluoride and chlorine on the polyamine-DNA condensation system can be detected. Fluoride and chlorine both belong to the halogen family, but their effects on spermine-DNA condensation system are totally different. Fluoride ions make blue-shift and hyperchromicity appear in the spermine-DNA condensation system, but chlorine ions only make insignificant hyperchromicity happen in this system. Both fluoride ions and chlorine ions only make insignificant hyperchromicity happen in spermidine-DNA condensation system. Based on the distinguished character of fluoride, a fluoride-sensor for "kink" structure in DNA condensation was developed and the second kind of "kink" structure only appear in the spermine-DNA condensation system.


Subject(s)
DNA/chemistry , Fluorides/chemistry , Spermidine/analogs & derivatives , Nucleic Acid Conformation , Spermidine/chemistry
6.
J Biol Phys ; 39(4): 665-71, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23904138

ABSTRACT

Depletion effects are well known to lead to phase separation in microsystems consisting of large and small particles with short-range repulsive interactions that act over macromolecular length scales. The equilibrium mechanics between an enveloped colloidal particle and a biomembrane caused by entropy is investigated by using a continuum model. We show that the favorable contact energy stems from entropy, which is sufficient to drive engulfment of the colloidal particle, and deformation of the biomembrane determines the resistance to the engulfment of the colloidal particle. The engulfment process depends on the ratio of the radii of the larger particle and smaller particles and the bending rigidity. The results show insights into the effects of depletion on biomembrane budding and nanoparticle transportation by a vesicle.


Subject(s)
Cell Membrane Structures/metabolism , Models, Biological , Biomechanical Phenomena , Colloids , Entropy , Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL
...