Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 905: 167200, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742976

ABSTRACT

Carbon black (CB), a component of environmental particulate pollution derived from carbon sources, poses a significant threat to human health, particularly in the context of lung-related disease. This study aimed to investigate the detrimental effects of aggregated CB in the average micron scale on lung tissues and cells in vitro and in vivo. We observed that CB particles induced lung disorders characterized by enhanced expression of inflammation, necrosis, and fibrosis-related factors in vivo. In alveolar epithelial cells, CB exposure resulted in decreased cell viability, induction of cell death, and generation of reactive oxidative species, along with altered expression of proteins associated with lung disorders. Our findings suggested that the damaging effects of CB on the lung involved the targeting of lysosomes. Specifically, CB promoted lysosomal membrane permeabilization, while lysosomal alkalization mitigated the harmfulness of CB on lung cells. Additionally, we explored the protective effects of alkaloids derived from Nelumbinis plumula, with a focus on neferine, against CB-induced lung disorders. In conclusion, these findings contribute to a deeper understanding of the pathophysiological effects of CB particles on the lungs and propose a potential therapeutic approach for pollution-related diseases.


Subject(s)
Lung , Soot , Humans , Soot/toxicity , Inflammation , Lysosomes , Carbon/metabolism
2.
Exp Ther Med ; 15(6): 4987-4994, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29904397

ABSTRACT

The present study used a mild contusion injury in rat spinal cord to determine that thymoquinone reduces inflammatory response, oxidative stress and apoptosis in a spinal cord injury (SCI) rat model and to demonstrate its possible molecular mechanisms. The rats in the thymoquinone group received 30 mg/kg thymoquinone once daily by intragastric administration from 3 weeks after surgery. Hematoxylin and eosin staining, Basso, Beattie and Bresnahan (BBB) scale and tissue water content detection were used in the present study to analyze the effect of thymoquinone on SCI. The activity of inflammatory response mediators, oxidative stress factors and caspase-3/9 was measured using ELISA kits. Furthermore, western blotting was performed to analyzed the protein expression levels of prostaglandin E2, suppressed cyclooxygenase-2 (COX-2) and activated peroxisome proliferator-activated receptor γ (PPAR-γ), PI3K and Akt. The results from the study demonstrated that thymoquinone increased Basso, Beattie and Bresnahan score and decreased water content in spinal cord tissue. Treatment with thymoquinone decreased inflammatory response [measured by levels of tumor necrosis factor α, interleukin (IL)-1ß, IL-6 and IL-18], oxidative stress (measured by levels of superoxide dismutase, catalase, glutathione and malondialdehyde) and cell apoptosis (measured by levels of caspase-3 and caspase-9) in SCI rats. Thymoquinone treatment inhibited prostaglandin E2 activity, suppressed COX-2 protein expression and activated PPAR-γ, PI3K and p-Akt protein expression in SCI rats. These data revealed that thymoquinone reduces inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways in an SCI rat model.

3.
J Cancer Res Clin Oncol ; 135(12): 1675-84, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19506903

ABSTRACT

PURPOSE: To identify the DNA methylation biomarkers for the detection of the stage I non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: The methylated state of p16INK4A, ESR1, HOX9, RASSF1A, DAPK1, PTEN, ABCB1, MGMT, APC and MT1G genes that have been reported frequently methylated in lung cancer was determined using methylation-specific PCR in four lung cancer cell lines, 124 cancer tissues of the stage I NSCLC and 26 non-cancerous disease tissues. RESULT: The RASSF1A (53/124, 42.74%), APC (49/123, 39.52%), ESR1 (37/124, 29.84%), ABCB1 (31/124, 24.19%, MT1G (25/124, 20.16%) and HOXC9 (17/124, 13.71%) genes were more frequently methylated in the lung tissue from the stage I NSCLC than the non-cancerous lesion patients (2/26, 7.69%, P < 0.01; 2/26, 7.69%, P < 0.01; 2/26, 7.69%, P < 0.05; 1/26, 3.85% P < 0.01; 0/26 0%, P value: <0.01; 0/26, 0%, P < 0.05, respectively). p16INK4A was methylated in 28/124 (22.56%) of cancer tissues and 2/26 (7.69%) of non-cancerous tissues (P value >0.05). No significant association between the methylated state of the genes and the smoking, age or the pathologic types (squamous carcinoma, adenoma and the mixed types) was found. However, p16INK4A methylation was more frequently detected in the male (23/80, 28.75%) than the female (5/44, 11.36%, P > 0.05) patients. MGMT was barely methylated: 1/67, 1.49%), while DAPK1 and PTEN were not at all methylated in the cancer groups. CONCLUSIONS: Methylation analysis in tissue of RASSF1A, APC, ESR1, ABCB1 and HOXC9 genes confirmed 79.8% of the existing diagnosis for the stage I NSCLC at specificity: 73.1%. The insufficiency of predicting disease onset in China, using the previously recommended targets (MGMT, DAPK1 and PTEN) in the United States reflects a potential disease disparity between these two populations. Alternatively, methylated state of this set of genes may be more specific to the late rather than the early stage of NSCLC.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Estrogen Receptor alpha/genetics , Genes, APC , Homeodomain Proteins/genetics , Lung Neoplasms/genetics , Tumor Suppressor Proteins/genetics , ATP Binding Cassette Transporter, Subfamily B , Adult , Aged , Apoptosis Regulatory Proteins/genetics , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Carcinoma, Non-Small-Cell Lung/pathology , China , Death-Associated Protein Kinases , Female , Genes, p16 , Humans , Lung Neoplasms/pathology , Male , Metallothionein/genetics , Middle Aged , Neoplasm Staging , PTEN Phosphohydrolase/genetics , Tumor Cells, Cultured
4.
Nucleic Acids Res ; 37(3): 793-803, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19074953

ABSTRACT

Methylation of CpGs is generally thought to repress transcription without significant influence from the sequence surrounding the methylated dinucleotides. Using the mouse Igf2/H19 imprinting control region (ICR), Igf2r differentially methylated region 2 (DMR2) and bacterial sequences, we addressed how methylation-dependent repression (MDR) from a distance varies with CpG number, density and surrounding sequence. In stably transfected F9 cells, the methylated ICR repressed expression from a CpG-free reporter plasmid more than 1000-fold compared with its unmethylated control. A segment of pBluescript, with a CpG number equal to the ICR's but with a higher density, repressed expression only 70-fold when methylated. A bacteriophage lambda fragment and the Igf2r DMR2 showed minimal MDR activity, despite having CpG numbers and densities similar to or greater than the ICR. By rearranging or deleting CpGs, we identified CpGs associated with three CTCF sites in the ICR that are necessary and sufficient for sequence-specific MDR. In contrast to F9 cells, the methylated ICR and pBS fragments exhibited only 3-fold reporter repression in Hela cells and none in Cos7. Our results show that the strength of MDR from a distance can vary a 1000-fold between different cell types and depends on the sequence surrounding the methylated CpGs, but does not necessarily increase with CpG number or density.


Subject(s)
CpG Islands , DNA Methylation , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , RNA, Untranslated/genetics , Animals , Base Sequence , CCCTC-Binding Factor , Cell Line , DNA-Binding Proteins/metabolism , Gene Silencing , Humans , Mice , Molecular Sequence Data , Promoter Regions, Genetic , RNA, Long Noncoding , Repressor Proteins/metabolism
5.
J Neurovirol ; 9(3): 372-89, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12775420

ABSTRACT

Neurodegeneration and human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) are the major disease manifestations of HIV-1 colonization of the central nervous system (CNS). In the brain, HIV-1 replicates in microglial cells and infiltrating macrophages and it persists in a low-productive, noncytolytic state in astrocytes. Astrocytes play critical roles in the maintenance of the brain microenvironment, responses to injury, and in neuronal signal transmission, and disruption of these functions by HIV-1 could contribute to HAD. To better understand the potential effects of HIV-1 on astrocyte biology, the authors investigated changes in gene expression using an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue, low-passage cells were infected with HIV-1 or mock infected, and total cellular RNAs were isolated at multiple time points over a period of 1 week. This approach is designed to identify gene products modulated early and late after HIV-1 infection and limits the cloning of genes displaying normal cell-cycle fluctuations in astrocytes. By subtracting temporal cDNAs derived from HIV-1-infected astrocytes from temporal cDNAs made from uninfected cells, 10 genes displaying reduced expression in infected cells, termed astrocyte suppressed genes (ASGs), were identified and their suppression was confirmed by Northern blot hybridization. Both known and novel ASGs, not reported in current DNA databases, that are down-regulated by HIV-1 infection are described. Northern blotting confirms suppression of the same panel of ASGs by treatment of astrocytes with recombinant HIV-1 envelope glycoprotein, gp120. These results extend our previous analysis of astrocyte genes induced or enhanced by HIV-1 infection and together they suggest that HIV-1 and viral proteins have profound effects on astrocyte physiology, which may influence their function in the CNS.


Subject(s)
Astrocytes/virology , Gene Expression Profiling , Gene Expression Regulation, Viral , HIV Envelope Protein gp120/pharmacology , HIV-1/physiology , Nerve Tissue Proteins/genetics , Subtraction Technique , Transcription, Genetic , AIDS Dementia Complex/genetics , AIDS Dementia Complex/metabolism , AIDS Dementia Complex/virology , Astrocytes/metabolism , Brain/cytology , Brain/embryology , Cells, Cultured/metabolism , Cells, Cultured/virology , DNA, Complementary/genetics , Gene Library , Humans , Nerve Tissue Proteins/biosynthesis , Oligonucleotide Array Sequence Analysis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Ribonucleases/metabolism
6.
Gene ; 306: 67-78, 2003 Mar 13.
Article in English | MEDLINE | ID: mdl-12657468

ABSTRACT

Genes displaying altered expression as a function of human immunodeficiency virus (HIV)-1 infection of cultured primary human fetal astrocytes (PHFA) were previously identified using a rapid subtraction hybridization (RaSH) method. This scheme identified both known and novel genes displaying elevated expression, astrocyte elevated genes (AEG), and decreased expression, astrocyte suppressed genes (ASG), in PHFA as a consequence of infection with HIV-1 or treatment with HIV-1 envelope glycoprotein (gp120). RaSH also identified both known and novel genes displaying enhanced (HR) or reduced (HS) expression in HIV-1 resistant versus HIV-1 susceptible human T-cell clones. In the present study, a customized microarray approach employing these RaSH-derived genes was used to distinguish overlapping gene expression changes occurring in PHFA as a function of treatment with HIV-1 and the neurotoxic agent tumor necrosis factor (TNF)-alpha. RaSH cDNAs were spotted (microarrayed) on nylon membranes and probed with temporally isolated reverse transcribed cDNAs from HIV-1-infected and TNF-alpha-treated PHFA. This strategy identified genes displaying parallel changes after TNF-alpha treatment as observed following HIV-1 infection. Confirmation of genuine differential expression was achieved by Northern blotting. These studies document that TNF-alpha can induce a set of corresponding changes in specific AEGs and ASGs as does HIV-1 infection in PHFA. Furthermore, this customized microarray approach with RaSH-derived clones represents an efficient and sensitive methodology for elucidating molecular changes in PHFA occurring as a consequence of treatment with pharmacological agents affecting astrocyte physiology.


Subject(s)
Astrocytes/metabolism , Gene Expression Profiling , HIV-1/growth & development , Oligonucleotide Array Sequence Analysis/methods , Tumor Necrosis Factor-alpha/pharmacology , Astrocytes/drug effects , Astrocytes/virology , Blotting, Northern , Cells, Cultured , DNA, Complementary/drug effects , DNA, Complementary/genetics , DNA, Complementary/metabolism , Fetus , Gene Expression Regulation, Developmental , Humans
7.
Oncogene ; 21(22): 3592-602, 2002 May 16.
Article in English | MEDLINE | ID: mdl-12032861

ABSTRACT

Neurodegeneration and dementia are common complications of AIDS caused by human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system. HIV-1 target cells in the brain include microglia, infiltrating macrophages and astrocytes, but rarely neurons. Astrocytes play an important role in the maintenance of the synaptic micro-environment and in neuronal signal transmission. To investigate potential changes in cellular gene expression associated with HIV-1 infection of astrocytes, we employed an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue and low-passage cells were infected with HIV-1. To identify genes that display both early and late expression modifications after HIV-1 infection and to avoid cloning genes displaying normal cell cycle fluctuations in astrocytes, RNAs were isolated and pooled from 6, 12, 24 h and 3 and 7 day uninfected and infected cells and used for RaSH. Temporal cDNA libraries were prepared from double-stranded cDNAs that were enzymatically digested into small fragments, ligated to adapters, PCR amplified, and hybridized by incubation of tester and driver PCR fragments. By subtracting temporal cDNAs derived from uninfected astrocytes from temporal cDNAs made from HIV-1 infected cells, genes displaying elevated expression in virus infected cells, termed astrocyte elevated genes (AEGs), were identified. Both known and novel AEGs, not reported in current DNA databases, are described that display early or late expression kinetics following HIV-1 infection or treatment with recombinant HIV-1 envelope glycoprotein (gp120). For selected AEGs, expression of their protein products was also tested by Western blotting and found to display elevated expression following HIV-1 infection. The comparable pattern of regulation of the AEGs following HIV-1 infection or gp120 treatment suggest that HIV-1 exposure of astrocytes, even in the absence of productive infection, can induce changes in cellular gene expression.


Subject(s)
Astrocytes/virology , Gene Expression Profiling/methods , HIV Envelope Protein gp120/pharmacology , HIV-1/pathogenicity , Nucleic Acid Hybridization/methods , Actinin/biosynthesis , Astrocytes/metabolism , Blotting, Northern , Brain/cytology , Brain/embryology , Cells, Cultured , Cloning, Molecular , Fibronectins/biosynthesis , Humans , Kinetics , RNA, Messenger/biosynthesis , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...