Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Pharm Biomed Anal ; 246: 116216, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38772204

ABSTRACT

The Qiye Shen'an tablet is formulated using total saponins extracted from Notoginseng stems and leaves. At present, the study on its chemical composition remains scarce and the quality control indicators are limited, which seriously hindering the effective quality control and clinical research. Hence, this study aims to comprehensively identify and characterize the Qiye Shen'an tablet while controlling its main component contents. To achieve a comprehensive understanding of this tablet, an ultra-high performance liquid coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method was employed for its separation and characterization. Through the analysis of 99 batches of Qiye Shen'an tablet produced by 9 enterprises, the characteristic quantitative components were further obtained. A total of 113 compounds were characterized and identified, among which 17 representative compounds were selected, and the ultra-high performance liquid-triple quadrupole tandem mass spectrometry (UPLC-TQS-MS/MS) method was established for further quantitative determination. It has been successfully applied to the content determination of 99 batches of Qiye Shen'an tablet, and a new quality control method is being formed. This study provides a new method for chemical spectrum analysis and determination of labeled compounds of Qiye Shen'an tablet, and lays a solid foundation for further study of potential active ingredients and comprehensive quality evaluation.


Subject(s)
Drugs, Chinese Herbal , Quality Control , Tablets , Tandem Mass Spectrometry , Tablets/chemistry , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid/methods , Saponins/analysis , Saponins/chemistry , Panax notoginseng/chemistry
2.
Front Nutr ; 11: 1348235, 2024.
Article in English | MEDLINE | ID: mdl-38571753

ABSTRACT

Shiitake mushrooms are renowned for their popularity and robust nutritional value, are susceptible to spoilage due to their inherent biodegradability. Nevertheless, because of their lack of protection, these mushrooms have a short shelf life. Throughout the post-harvest phase, mushrooms experience a persistent decline in quality. This is evidenced by changes such as discoloration, reduced moisture content, texture changes, an increase in microbial count, and the depletion of nutrients and flavor. Ensuring postharvest quality preservation and prolonging mushroom shelf life necessitates the utilization of post-harvest preservation techniques, including physical, chemical, and thermal processes. This review provides a comprehensive overview of the deterioration processes affecting mushroom quality, covering elements such as moisture loss, discoloration, texture alterations, increased microbial count, and the depletion of nutrients and flavor. It also explores the key factors influencing these processes, such as temperature, relative humidity, water activity, and respiration rate. Furthermore, the review delves into recent progress in preserving mushrooms through techniques such as drying, cooling, packaging, irradiation, washing, and coating.

3.
Biomed Chromatogr ; 37(11): e5726, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37651744

ABSTRACT

The excreta of Trogopterus xanthipes ("Wulingzhi" in Chinese, WLZ) is a well-known traditional Chinese medicine. It has been used for centuries to treat amenorrhea, menstruation and postpartum abdominal pain. However, a systematic quality study on WLZ chemical markers has yet to be conducted. This study aimed to establish an ultra-high-performance liquid chromatography coupled with a hybrid quadruple extraction Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) method for the simultaneous quantitative determination of 20 compounds in 53 batches of WLZ; the method rapidly and sensitively determined the 20 plant- or animal-derived compounds. Firstly, the proposed approach was validated to satisfy the method's linearity, detection limits, precision, repeatability, stability and accuracy. Subsequently, multivariate analysis was used to identify correlations between the samples and feed, processing and regions. Finally, this method was used to further identify chemical markers for quality control in combination with chemometrics. This is the first report on pinusolide, betaine, hippuric acid, 4-oxorentinoic acid, 15-methoxypinusolidic acid and 4-oxoisotrentinoin in WLZ; the quality of WLZ became homogeneous after processing with vinegar (V-WLZ). Moreover, we screened for potential component markers, including uridine, allantoin, amentoflavone, hippuric acid, 3,4-dihydroxybenzoic acid, pinusolide, quercetin and kaempferol. These results were practical and efficient for the chemical clarification of WLZ and V-WLZ.

4.
Macromol Rapid Commun ; 44(13): e2300099, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37020406

ABSTRACT

To cope with the severe plastic waste crisis, massive efforts are made to develop sustainable polymer materials whose degradation involves a disposing and decomposing to small molecule (DDM) and/or a chemical recycling to monomer (CRM) process. Polyacetals, a type of pH-responsive polymers, are degradable under acidic conditions, while highly stable under neutral and basic circumstances. As for their synthesis, the cationic ring-opening polymerization (CROP) of cyclic acetals is an elegant and promising approach, though suffering from fatal side reactions and polymerization-depolymerization equilibrium. Recent development in CRM restimulates the interest in the long-forgotten CROP method due to its inherent depolymerization characteristics. In terms of the end-of-life options, polyacetals are recyclable materials with both DDM and CRM potentials. They not only expand the scope of materials for closed-loop recycling but also help to tune the degradation properties of traditional polyesters and polyolefins. This review aims to discuss the synthesis of various polyacetals by CROP and their degradation properties from the perspectives of 1) polymerization of cyclic acetals, dioxepins, and hemiacetal esters, 2) copolymerization of cyclic acetals with heterocyclic or vinyl monomers, and 3) degradation and recycling properties of the related polymers.


Subject(s)
Acetals , Polymers , Polymerization , Acetals/chemistry , Polymers/chemistry , Polyesters
5.
Gene ; 851: 147040, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36370999

ABSTRACT

BACKGROUND: Never in Mitosis gene-A(NIMA)-related Kinase 2 (NEK2) is a critical player in themitotic processes. NEK2 is highly expressed in many kindsof human cancers and has been shown toparticipatein drug resistance, tumorigenesis, and tumor progression. However, the expression or function of NEK2 in clear cell renal cell carcinoma (ccRCC)hasnot yet been investigated. METHODS: Weused TCGA databaseto study the NEK2 expression in ccRCC. The expression of NEK2 in tumor tissuesand adjacent tissueswas examined by immunohistochemistry. We also analysed the correlation between NEK2 expression and clinical parametersofccRCC. The mRNA and protein level of NEK2 expression were semi-quantifiedby qRT-PCR and western blotting analysis. Following NEK2 knockdown by RNA interference in Caki-1cells, whileNEK2 overexpression in A489 cells, CCK8and transwell assay was used to confirmtheproliferation, migration and invasion, respectively.Finally, our in vivo study were carried out using nudemice to establish mouse model for kidney cancer. RESULTS: We observed elevated expression of NEK2 both in ccRCCtumor tissues and cell lines. Together with clinical and pathological features, our analysis indicated a clear association of clinical outcomes between ccRCC patients with high and lowNEK2expression. Our in vitro studies demonstratedthat NEK2 knockdowninhibits the proliferation,migrationand invasion of Caki-1cells, oppositely, overexpressionof NEK2 promotes the proliferation, migrationand invasion of A489cells.In the end, our animal study demonstrated that deletion of NEK2 expression could impair tumor growth. CONCLUSION: Our data suggestedthat NEK2wasimportant inregulating ccRCC cell proliferation and metastasis, and indicated NEK2as a potentially important target for the treatment ofccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Mice , Animals , Humans , Carcinoma, Renal Cell/metabolism , Cell Movement , Cell Line, Tumor , Cell Proliferation/genetics , Kidney Neoplasms/pathology , Gene Expression Regulation, Neoplastic , NIMA-Related Kinases/genetics
6.
Bioengineered ; 13(6): 14780-14798, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36260305

ABSTRACT

Sucrose, an essential carbohydrate, is transported from source to sink organs in the phloem and is involved in a variety of physiological and metabolic processes in plants. Sucrose transporter proteins (SUTs) may play significant parts in the phloem loading and unloading of sucrose. In our study, the SUT gene family was identified in four Solanaceae species (Capsicum annuum, Solanum lycopersicum, S. melongena, and S. tuberosum) and other 14 plant species ranged from lower and high plants. The comprehensive analysis was performed by integration of chromosomal distribution, gene structure, conserved motifs, evolutionary relationship and expression profiles during pepper growth under stresses. Chromosome mapping revealed that SUT genes in Solanaceae were distributed on chromosomes 4, 10 and 11. Gene structure analysis showed that the subgroup 1 members have the same number of introns and exons. All the SUTs had 12 transmembrane structural domains exception from CaSUT2 and SmSUT2, indicating that a structure variation might occurred among the Solanaceae SUT proteins. We also found a total of 20 conserved motifs, with over half of them shared by all SUT proteins, and the SUT proteins from the same subgroup shared common motifs. Phylogenetic analysis divided a total of 72 SUT genes in the plant species tested into three groups, and subgroup 1 might have diverged from a single common ancestor prior to the mono-dicot split. Finally, expression levels of CaSUTs were induced significantly under heat, cold, and salt treatments, indicating diverse functions of the CaSUTs to adapt to adverse environments.


Subject(s)
Gene Expression Regulation, Plant , Solanaceae , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Solanaceae/genetics , Solanaceae/metabolism , Plants/metabolism , Sucrose/metabolism
7.
Polymers (Basel) ; 14(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35566984

ABSTRACT

This contribution reports the syntheses, structural analyses and properties of europium (Eu3+)- and terbium (Tb3+)-based coordination complexes of poly(N-isopropyl,N-methylacrylamide-stat-N,N-dimethylacrylamide) (poly(iPMAm-stat-DMAm)) copolymer, named as poly-Eu(III) and poly-Tb(III), respectively. In greater detail, poly(iPMAm85-stat-DMAm15) is first prepared by random copolymerization of N-isopropyl,N-methylacrylamide (iPMAm) and N,N-dimethylacrylamide (DMAm) via group transfer polymerization (GTP). Next, poly(iPMAm85-stat-DMAm15) is used as the polymer matrix for chelating with Eu3+ and Tb3+ cations at its side amide groups, to produce poly-Eu(III) and poly-Tb(III). Their structural characterizations by FT-IR spectroscopy and XPS confirm the formation of polymeric complexes. The study on their fluorescence emission characteristics and luminescence lifetime demonstrates that Poly-Eu(III) shows four strong emission peaks at 578, 593, 622, and 651 nm, which are responsible for the electron transitions from the excited 5D0 state to the multiplet 7FJ (J = 0, 1, 2, 3) states, respectively, and poly-Tb(III) also displays four emission peaks at 489, 545, 588, and 654 nm, mainly due to the electron transitions of 5D4 → 7Fi (i = 6, 5, 4, 3). The luminescence lifetimes of poly-Eu(III) (τpoly-Eu(III)) and poly-Tb(III) (τpoly-Tb(III)) are determined to be 4.57 and 7.50 ms, respectively. In addition, in aqueous solutions, poly-Eu(III) and poly-Tb(III) are found to exhibit thermoresponsivity, with their cloud temperatures (Tcs) locating around 36.4 and 36.8 °C, respectively. Finally, the cytotoxicity study on the human colon carcinoma cells LoVo and DLD1 suggests that the luminescent Eu3+ and Tb3+ in the chelated state with poly(iPMAm-stat-DMAm) show much better biocompatibility and lower toxicity than their inorganic salts.

8.
Macromol Rapid Commun ; 43(6): e2100808, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35142413

ABSTRACT

Herein, a new type of degradable poly(ß-trimethylsilyloxy ester) prepared by the organocatalyzed Mukaiyama aldol polyaddition between bis(silyl ketene acetal)s and dialdehydes is reported. Specifically, the t-Bu-P4 -catalyzed polyaddition between 1,2-bis[2-methyl-1-(trimethylsiloxy)prop-1-enyloxy]ethane (MTS2 ) and 4,4'-biphenyldicarboxaldehyde (BPDA) or butane-1,4-diyl bis(4-formylbenzoate) (BDA) can produce poly(ß-trimethylsilyloxy ester)s with number-average molar mass greater than 10 kg mol-1 . For the first time, it is found that these poly(ß-trimethylsilyloxy ester)s are degradable in solution in the presence of nucleophiles such as fluoride and cyanide anions. It is also found that the degradation behavior of poly(ß-trimethylsilyloxy ester)s is highly dependent on the nature of the used catalyst and the bond scission in polymer is fundamentally rooted in the retro Mukaiyama aldol reaction mechanism.


Subject(s)
Esters , Polymers , Aldehydes , Molecular Structure , Stereoisomerism
9.
Sci Technol Adv Mater ; 22(1): 597-606, 2021.
Article in English | MEDLINE | ID: mdl-34377086

ABSTRACT

A π-conjugated urea-bearing phenyleneethynylene polymer (Poly-2) was rationally designed by the Sonogashira coupling condensation reaction and had been demonstrated to have a unique fluorescent quenching effect for the optical detection of all determined anions, especially for CN-. The fluorescent emission of Poly-2 was significantly quenched upon adding CN-, together accompanied with a continuous red shift of the emission peak from 442 to 464 nm with the cyanide concentration increased from 0 to 1.0 mM. On the contrary, its precursor polymer, Poly-1, itself also displayed fluorescent responsibility with all selected anions but had no obvious selectivity and tendency. For instance, the addition of highly basic CN-, N3 -, AcO-, or F- to Poly-1 solution in DMF/H2O (v/v = 1:1) led to the photoluminescence amplification, while the addition of weakly basic anions like Cl-, I-, and Br- showed a fluorescence quenching effect. Both polymers were in a seriously self-aggregated state in solution no matter in the absence or presence of an anion. Interestingly, it was found that Poly-2 exhibited an aggregation-induced emission behavior, while Poly-1 had an aggregation-caused quenching effect, based on the relationship between photoluminescence and polymer aggregation state. The structural characterizations were carried out by NMR spectroscopy and size exclusion chromatography measurements; the photoluminescence properties of Poly-1 and Poly-2 together with anion sensing properties were followed by fluorescence spectroscopy, and the relationship between photoluminescence and aggregation behavior of both polymers in solution was investigated by dynamic light scattering measurements.

10.
Arch Microbiol ; 203(6): 3061-3070, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33791833

ABSTRACT

During the past few years, there are growing interests in the potential use of exopolysaccharide (EPS) in the food industry as an efficient biopolymer because of its exceptional biological features. Therefore, the aim of the present study is EPS production by Lactobacillus Plantarum S123 (S123 EPS), its partial structural and biopotential characterization. The results from this study suggested that the major portion of S123 EPS has an amorphous sponge-like structure with partial crystalline nature. The FTIR and NMR results suggested that the S123 EPS consists of carbonyl and hydroxyl groups, respectively. Furthermore, the results of technological as well as biotechnological characterization suggested that the S123 EPS was exhibited excellent antibacterial activity against Gram-positive (7.2 mm) and Gram-negative bacteria (11.5 mm), DPPH radical scavenging activity (> 65%), water holding capacity (326.6 ± 0.5%), oil holding capacity (995.3 ± 0.2%), flocculation (89.5 ± 0.6%), and emulsifying (80.1 ± 1.1%) activities. Overall, the present results suggested that due to the highly porous structure and efficient biotechnological potential, S123 EPS from Lactobacillus plantarum S123 (L. plantarum S123) can be used in the functional food product.


Subject(s)
Bacteria , Cheese , Lactobacillus plantarum , Polysaccharides, Bacterial , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Cheese/microbiology , China , Lactobacillus plantarum/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification , Polysaccharides, Bacterial/pharmacology
11.
Gene ; 769: 145243, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33069804

ABSTRACT

BACKGROUND: Deficiency of folliculin (FLCN) may lead to renal cell carcinoma (RCC) in patients with Birt-Hogg-Dubé (BHD) disease. In this study, we investigated the cytotoxicity induced by PARP inhibitor olaparib in FLCN deficient RCC cells, and the interaction between FLCN and BRCA1 A complex-regulated DNA repair pathway. METHODS AND MATERIALS: FLCN expressing (ACHN and UOK257-F) and FLCN deficient (ACHN-2 and UOK257) cell lines were used in this research. Cell viability was detected by clonogenic assay and MTT assay. Flow cytometry and TUNEL assay were used to detect apoptosis. Autophagy in cells was measured by MDC assay, western blot, and transmission electron microscopy. Co-immunoprecipitation, immunofluorescence and western blot experiments were performed to determine the interaction between FLCN protein and BRCA1 A complex. The in vivo experiments were performed in a xenograft model by inoculating UOK 257 in nude mice. RESULTS: RCC cells with FLCN protein deficiency were more sensitive to olaparib treatment than the cells with FLCN expression. Olaparib treatment led to more severe autophagy and apoptosis in FLCN deficient ACHN-2 and UOK257 cells compared to the FLCN expressing ACHN and UOK257-F cells. Decreased BRCA1 A complex expression and disruption of DNA repair ability were detected in FLCN-deficient cells, suggesting that FLCN deficiency impaired BRCA1 A complex expression and sensitized cells to PARP inhibitor olaparib. CONCLUSIONS: RCC cells deficient in FLCN are sensitive to olaparib treatment due to the impairment of BRCA1 A complex associated DNA repair ability. The results suggest that PARP inhibitor, such as olaparib, may be a potentially effective therapeutic approach for kidney tumors with deficiency of FLCN protein.


Subject(s)
Antineoplastic Agents/pharmacology , BRCA1 Protein/metabolism , Carcinoma, Renal Cell/metabolism , Estrone/metabolism , Kidney Neoplasms/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Humans , Kidney Neoplasms/pathology , Mice , Mice, Nude
12.
Int J Genomics ; 2020: 9493256, 2020.
Article in English | MEDLINE | ID: mdl-33381539

ABSTRACT

This study is aimed at investigating the expression, clinical significance, and biological role of CPT1A in kidney renal clear cell carcinoma (KIRC). We used the TCGA database and clinical pathology of tissue specimens to study the expression of CPT1A in KIRC. The expression of CPT1A in the kidney cancer tissue was significantly lower than that in the normal tissue. Survival curves demonstrated that the expression was correlated with prognosis in patients. We used the plasmid transfection method to explore the biological role of CPT1A in renal cancer cells and performed CCK-8, wound healing, and Transwell invasion experiments. The results demonstrated that CPT1A can inhibit the proliferation, migration, and invasion of renal cancer cells. Subsequently, we employed a bioinformatics analysis to further elucidate the role of CPT1A. The PPI network diagram was plotted, along with the coexpression diagram, between CPT1A and ten associated genes. The heat map was plotted, and the hazard ratio analysis of these eleven genes in KIRC was performed. Furthermore, the CPT1A, LPL, CPT2, and EHHADH genes were used to establish a reliable prognostic risk signature in KIRC. GSEA analysis demonstrated that CPT1A modulates tumor development via a variety of biological pathways in KIRC. We believe that CPT1A most likely suppresses tumor progression by employing tumor "slimming" in KIRC. Collectively, the results indicate the potential of CPT1A as a novel prognostic indicator and potential therapeutic target in KIRC.

13.
J Cancer ; 11(23): 6823-6833, 2020.
Article in English | MEDLINE | ID: mdl-33123273

ABSTRACT

The purpose of this study was to investigate the genetic variation, gene expression differences, and clinical significance of SUMOylation regulators in pan-cancers. Based on previous studies, we gained a better understanding of the biological process of SUMOylation and the status of current research. In the present study, we employed a wide range of bioinformatics methods. We used genetic variation and mRNA expression data in the Cancer Genome Atlas (TCGA) to construct a panoramic view of the single nucleotide variants, copy number variants, and gene expression changes in SUMOylation regulators in various tumors. Subsequently, we used the String website and the Cytoscape tool to construct the PPI network between these regulators. We used the GSCALite website to determine the relationship between these regulators and cancer pathways and drug sensitivity. We constructed images of co-expression between these regulators using the R programming language. Using clinical data from TCGA, we performed hazard ratio analysis for these regulators in pan-cancer. Most importantly, we used these regulators to successfully establish risk signatures related to patient prognosis in multiple tumors. Finally, in KIRC, we conducted gene-set enrichment analysis (GSEA) of the five molecules in its risk signatures. We found that these five molecules are involved in multiple cancer pathways. In short, we have comprehensively interpreted the detailed biological process of SUMOylation at the genetic level for the first time, successfully constructed multiple risk signatures, and conducted GSEA in KIRC. We believe that these findings provide credible and valuable information that is relevant for future clinical diagnoses and scientific research.

14.
Biomed Res Int ; 2020: 8409239, 2020.
Article in English | MEDLINE | ID: mdl-32908919

ABSTRACT

PURPOSE: To evaluate the expression of tripartite motif-containing 33 (TRIM33) in ccRCC tissues and explore the biological effect of TRIM33 on the progress of ccRCC. METHOD: The Cancer Genome Atlas (TCGA) database was used to examine the mRNA expression levels of TRIM33 in ccRCC tissues and its clinical relevance. Immunohistochemistry (IHC) was performed to evaluate its expression in ccRCC tissues obtained from our hospital. The correlation between TRIM33 expression and clinicopathological features of the patients was also investigated. The effects of TRIM33 on the proliferation of ccRCC cells were examined using the CCK-8 and colony formation assays. The effects of TRIM33 on the migration and invasion of ccRCC cells were explored through wound healing and transwell assays, along with the use of Wnt signaling pathway agonists in rescue experiments. Western blotting was used to explore the potential mechanism of TRIM33 in renal cancer cells. A xenograft model was used to explore the effect of TRIM33 on tumor growth. RESULT: Bioinformatics analysis showed that TRIM33 mRNA expression in ccRCC tissues was downregulated, and low TRIM33 expression was related to poor prognosis in ccRCC patients. In agreement with this, low TRIM33 expression was detected in human ccRCC tissues. TRIM33 expression levels were correlated with clinical characteristics, including tumor size and Furman's grade. Furthermore, TRIM33 overexpression inhibited proliferation, migration, and invasion of 786-O and ACHN cell lines. The rescue experiment showed that the originally inhibited migration and invasion capabilities were restored. TRIM33 overexpression reduced the expression levels of ß-catenin, cyclin D1, and c-myc, and inhibited tumor growth in ccRCC cells in vivo. CONCLUSION: TRIM33 exhibits an abnormally low expression in human ccRCC tissues. TRIM33 may serve as a potential therapeutic target and prognostic marker for ccRCC.


Subject(s)
Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Transcription Factors/metabolism , Adult , Animals , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Immunohistochemistry , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Male , Mice , Middle Aged , Prognosis , Transcription Factors/genetics , Wnt Signaling Pathway/genetics , Xenograft Model Antitumor Assays
15.
J Chromatogr Sci ; 58(6): 542-548, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32405648

ABSTRACT

The excreta of Trogopterus xanthipes (also called Wulingzhi in Chinese, WLZ) is a well-known traditional Chinese medicine used for the treatment of irregular menstruation in clinic. Few reports are available on the chemical profiling of WLZ. In this work, qualitative and quantitative analyses of endogenous prostaglandin and hormones in WLZ were performed using UHPLC-orbitrap-MSn. In total, 48 compounds were identified in urine of T. xanthipes. Furthermore, the contents of four target compounds were simultaneously quantitated in 20 batches of samples by UPLC-MS/MS. The quantitative method showed a good linear correlation (R > 0.995) in a wide range for each compound. The method had a high sensitivity with LOD (0.5-1.0 ng/mL) and LOQ (1.0-2.5 ng/mL). The intra- and inter-day precisions were < 9.17 (RSD %), and repeatability and stability were < 6.14 (RSD %). The recovery of the analytes varied between 85.8% and 97.3% at three different concentrations. The present integrated qualitative and quantitative assessment of WLZ provides an evaluation strategy to assess the constituent in traditional Chinese medicine.


Subject(s)
Hormones , Prostaglandins , Sciuridae , Animals , Chromatography, High Pressure Liquid/methods , Feces/chemistry , Hormones/analysis , Hormones/chemistry , Hormones/urine , Limit of Detection , Linear Models , Medicine, Chinese Traditional , Prostaglandins/analysis , Prostaglandins/chemistry , Prostaglandins/urine , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods
16.
Biomed Res Int ; 2020: 2527643, 2020.
Article in English | MEDLINE | ID: mdl-32104684

ABSTRACT

Targeted therapy for kidney cancer has achieved significant clinical results. However, because most patients who use targeted therapy will develop drug resistance, we still need to constantly explore new therapeutic targets. Although porcupine (PORCN) as a palmitoyltransferase plays a crucial role in the activation and secretion of Wnt proteins and affects the activity of the Wnt signaling pathway, little is known about the role of PORCN in clear cell renal cell carcinoma (ccRCC). We found that PORCN is highly expressed in renal cancer cell lines and patients with renal cell carcinoma with high expression of PORCN have a poor prognosis. Pathway analysis of PORCN and its related proteins showed that PORCN played a role through the Wnt signaling pathway, and there was a strong coexpression relationship between PORCN and Wnt proteins. Therefore, PORCN may be a potential and effective target for ccRCC. In the present study, we found that LGK974 could inhibit proliferation and colony formation and induce apoptosis in ccRCC cells. We also found that LGK974 could inhibit the migration and invasion of renal cell carcinoma and reduce the expression of mesenchymal markers. After treatment with LGK974, the expression level of ß-catenin, a key protein in the classical Wnt pathway, was significantly decreased, and the expression levels of the target genes cyclin D1, c-Myc, MMP9, and MMP2 in the Wnt signaling pathway were also significantly decreased, which represented a significant decrease in the activity of the Wnt signaling pathway. At the same time, the cycle of renal cancer cells was significantly blocked. In conclusion, our results indicate that LGK974 could significantly inhibit the progression of renal cancer cells in a safe concentration range, so PORCN may be a safe and effective target for patients with renal cancer.


Subject(s)
Acyltransferases/antagonists & inhibitors , Carcinoma, Renal Cell/metabolism , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Kidney Neoplasms/metabolism , Membrane Proteins/antagonists & inhibitors , Neoplasm Proteins , Pyrazines/pharmacology , Pyridines/pharmacology , Wnt Signaling Pathway/drug effects , Acyltransferases/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Membrane Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism
17.
Biomed Res Int ; 2020: 8283401, 2020.
Article in English | MEDLINE | ID: mdl-32047816

ABSTRACT

Bladder cancer (BLCA) is a common malignant cancer, and it is the most common genitourinary cancer in the world. The recurrence rate is the highest of all cancers, and the treatment of BLCA has only slightly improved over the past 30 years. Genetic and environmental factors play an important role in the development and progression of BLCA. However, the mechanism of cancer development remains to be proven. Therefore, the identification of potential oncogenes is urgent for developing new therapeutic directions and designing novel biomarkers for the diagnosis and prognosis of BLCA. Based on this need, we screened overlapping differentially expressed genes (DEG) from the GSE7476, GSE13507, and TCGA BLCA datasets. To identify the central genes from these DEGs, we performed a protein-protein interaction network analysis. To investigate the role of DEGs and the underlying mechanisms in BLCA, we performed Gene Ontology (GO) and Kyoto Gene and Genomic Encyclopedia (KEGG) analysis; we identified the hub genes via different evaluation methods in cytoHubba and then selected the target genes by performing survival analysis. Finally, the relationship between these target genes and tumour immunity was analysed to explore the roles of these genes. In summary, our current studies indicate that both cell division cycle 20 (CDC20) and abnormal spindle microtubule assembly (ASPM) genes are potential prognostic biomarkers for BLCA. It may also be a potential immunotherapeutic target with future clinical significance.


Subject(s)
Biomarkers, Tumor/genetics , Biomarkers, Tumor/isolation & purification , Early Detection of Cancer/methods , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Cdc20 Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Nerve Tissue Proteins/genetics , Prognosis , Protein Interaction Maps , RNA, Messenger/metabolism , Survival Analysis
18.
J Cell Biochem ; 119(11): 9408-9418, 2018 11.
Article in English | MEDLINE | ID: mdl-30132983

ABSTRACT

This study aimed to investigate the role and the possible mechanism of the long noncoding small nucleolar RNA host gene 16 (SNHG16) in bladder cancer development. The expression of SNHG16 in the tumor tissues and plasma of patients with bladder cancer as well as bladder cancer cell lines was detected. T24 cells were then transfected with sh-SNHG16 to further investigate the effects of suppression of SNHG16 on T24 cell proliferation, apoptosis, migration, and invasion. In addition, the regulatory relationships between SNHG16 and miR-98 as well as the target of miR-98 were explored. Besides, the association between SNHG16 and the Wnt/ß-catenin pathway was further elucidated. The SNHG16 expression was upregulated in the tumor tissues and plasma of patients with bladder cancer, as well as bladder cancer cells. Suppression of SNHG16 inhibited T24 cell proliferation, promoted apoptosis, and suppressed migration and invasion in vitro. In addition, SNHG16 negatively regulated miR-98 expression and regulated the malignant behaviors of T24 cells through sponging miR-98. Moreover, signal transducer and activator of transcription 3 (STAT3) was identified as a functional target of miR-98, and miR-98 regulated the malignant behaviors of bladder cancer cells by targeting STAT3. Besides, suppression of SNHG16 inhibited the activation of the Wnt/ß-catenin pathway, which was further regulated by miR-98 and STAT3, indicating that the effects of SNHG16/miR-98/STAT3 on T24 cells were achieved through the Wnt/ß-catenin pathway. Our findings reveal that long noncoding RNAs SNHG16 is upregulated in bladder cancer and contributes to the development of bladder cancer possibly via regulating the miR-98/STAT3/Wnt/ß-catenin pathway axis. The SNHG16/miR-98/STAT3/Wnt/ß-catenin pathway axis may provide a new strategy for bladder cancer treatment.


Subject(s)
MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , STAT3 Transcription Factor/metabolism , Urinary Bladder Neoplasms/metabolism , beta Catenin/metabolism , Apoptosis/genetics , Apoptosis/physiology , Cell Line , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/physiology , Cell Survival/genetics , Cell Survival/physiology , Flow Cytometry , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , Urinary Bladder Neoplasms/genetics , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology , beta Catenin/genetics
19.
BMC Cancer ; 18(1): 434, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29665787

ABSTRACT

BACKGROUND: Metformin (Met) is a widely available diabetic drug and shows suppressed effects on renal cell carcinoma (RCC) metabolism and proliferation. Laboratory studies in RCC suggested that metformin has remarkable antitumor activities and seems to be a potential antitumor drug. But the facts that metformin may be not effective in reducing the risk of RCC in cancer clinical trials made it difficult to determine the benefits of metformin in RCC prevention and treatment. The mechanisms underlying the different conclusions between laboratory experiments and clinical analysis remains unclear. The goal of the present study was to determine whether long-term metformin use can induce resistance in RCC, whether metformin resistance could be used to explain the disaccord in laboratory and clinical studies, and whether the drug valproic acid (VPA), which inhibits histone deacetylase, exhibits synergistic cytotoxicity with metformin and can counteract the resistance of metformin in RCC. METHODS: We performed CCK8, transwell, wound healing assay, flow cytometry and western blotting to detect the regulations of proliferation, migration, cell cycle and apoptosis in 786-O, ACHN and metformin resistance 786-O (786-M-R) cells treated with VPA, metformin or a combination of two drugs. We used TGF-ß, SC79, LY294002, Rapamycin, protein kinase B (AKT) inhibitor to treat the 786-O or 786-M-R cells and detected the regulations in TGF-ß /pSMAD3 and AMPK/AKT pathways. RESULTS: 786-M-R was refractory to metformin-induced antitumor effects on proliferation, migration, cell cycle and cell apoptosis. AMPK/AKT pathways and TGF-ß/SMAD3 pathways showed low sensibilities in 786-M-R. The histone H3 acetylation diminished in the 786-M-R cells. However, the addition of VPA dramatically upregulated histone H3 acetylation, increased the sensibility of AKT and inhibited pSMAD3/SMAD4, letting the combination of VPA and metformin remarkably reappear the anti-tumour effects of metformin in 786-M-R cells. CONCLUSIONS: VPA not only exhibits synergistic cytotoxicity with metformin but also counteracts resistance to metformin in renal cell carcinoma cell. The re-sensitization to metformin induced by VPA in metformin-resistant cells may help treat renal cell carcinoma patients.


Subject(s)
Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Epithelial-Mesenchymal Transition , Histones/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Metformin/pharmacology , Valproic Acid/pharmacology , Acetylation , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Drug Resistance , Humans , Signal Transduction/drug effects
20.
Zhongguo Zhong Yao Za Zhi ; 42(19): 3770-3775, 2017 Oct.
Article in Chinese | MEDLINE | ID: mdl-29235294

ABSTRACT

A method for the simultaneous determination of sixteen mycotoxins in cogon rootstalk was developed using ultra-performance liquid chromatography coupled with triple quadropole mass spectrometry(UPLC-QqQ-MS/MS). The samples were extracted with acetonitrile contained 1% acetic acid and purified by QuEChERS method. The separation was performed on an Agilent Eclipse Plus C18column by gradient elution using methanol and 0.01% aqueous formic acid as mobile phase. The targeted compounds were detected in MRM mode by mass spectrometry with electrospray ionization(ESI)source operated in positive ionization mode. The linear relationships of the sixteen mycotoxins were good in their respective linear ranges. The correlation coefficients(r)ranged among 0.996 2-1.000. The LOQs of the sixteen mycotoxins were between 0.03 and 186.68 µg•kg ⁻¹. The average recoveries ranged from 60.28% to 129.2% with relative standard deviations(RSDs)within 0.29%-11%. The results demonstrated that the proposed method was sensitive and accurate, and suitable for the mycotoxins quantification in cogon rootstalk.


Subject(s)
Mycotoxins/analysis , Plant Roots/chemistry , Poaceae/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...