Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Heliyon ; 9(11): e21049, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37964833

ABSTRACT

An embedded core fiber sensor based on surface plasmon resonance (SPR) principle is developed. In the structure of optical fiber, the middle of the optical fiber cladding is hollowed out. The hollowed-out part is then filled with a temperature-sensitive layer. For the temperature sensitive layer, polydimethylsiloxane(PDMS) is chosen. A metal layer is placed outside the cladding of the optical fiber to detect changes in the external environment and stimulate the SPR effect.The gold metal(Au) layer is also placed between the cladding and the PDMS to stimulate the SPR effect.The refractive index of seawater varies with salinity and temperature through COMSOL Multiphysics finite element simulation. We can measure the two parameters of salinity and temperature at the same time based on the SPR principle. The sensitivity of salinity and temperature calculated by this sensor is 0.193 nm/%, 0.397 nm/°C. Fiber optic sensors use the SPR principle to detect dynamic, real-time, continuous processes. The measurement range is very wide, and the brightness is also very high.Compared with single-channel measurement of single parameter, this sensor can greatly improve the efficiency of two-parameter measurement. The sensor has the advantages of simple structure, low production cost and high sensitivity, which can realize the simultaneous measurement of two parameters and avoid the crosstalk between parameters. It has great research significance.

2.
Materials (Basel) ; 16(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176472

ABSTRACT

As a municipal solid waste, waste glass undergoes pozzolanic activity when ground to a certain fineness. In this paper, calcium carbide residue (CCR) and Na2CO3 were used as composite alkali activators for a glass powder-based composite cementitious system. A total of 60% fly ash (FA) and 40% ground granulated blast furnace slag (GGBS) were used as the reference group of the composite cementitious material system, and the effects of 5%, 10%, 15%, and 20% glass powder (GP) replacing FA on the rheological behavior, mechanical properties, and microstructure of alkali-activated composite cementitious systems were investigated. The results showed that with the increase in GP replacing FA, the fluidity of the alkali-activated materials gradually decreased, the shear stress and the equivalent plastic viscosity both showed an increasing trend, and the paste gradually changed from shear thinning to shear thickening. Compared with the reference sample, the fluidity of the alkali-activated material paste with a 20% GP replacement of FA was reduced by 15.3%, the yield shear stress was increased by 49.6%, and the equivalent plastic viscosity was elevated by 32.1%. For the 28d alkali-activated material pastes, the compressive strength and flexural strength were increased by 13% and 20.3%, respectively. The microstructure analysis showed the substitution of FA by GP promoted the alkali-activated reaction to a certain extent, and more C-A-S-H gel was formed.

3.
Materials (Basel) ; 15(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744264

ABSTRACT

Despite their excellent performance, two-dimension nanomaterials have certain limitations in improving the performance of cement-based materials due to their poor dispersity in the alkaline environment. This paper has synthesized a new two-dimension stacked GO-SiO2 (GOS) hybrid through the sol-gel method. Nano-SiO2 is coated on the surface of GO with wrinkling characteristics, and the atomic ratio of C, O, and Si in GOS is 1:1.69:0.57. The paper discusses the impacts on the spreading, Marsh cone flow time, rheological properties, mechanical properties, and microstructure of cement-based materials for the GOS at different mixing quantities. Furthermore, with the same mixing quantity of 0.01%, the influences on the dispersity, flow properties, rheological parameters, and mechanical properties of GOS and graphene oxide (GO) are compared. Lastly, fuzzy matrix analysis has been adopted to analyze the comprehensive performance of cement-based materials containing GOS. The research results indicate that, compared with the reference sample, the spreading for the GOS cement mortar with 0.01% mixing quantity was reduced by 4.76%, the yield shear stress increased by 37.43%, and the equivalent plastic viscosity was elevated by 2.62%. In terms of the 28 d cement pastes, the compressive and flexural strength were boosted by 27.17% and 42.86%, respectively. According to the optical observation, GOS shows better dispersion stability in the saturated calcium hydroxide solution and simulated pore solution than GO. Compared with the cement-based materials with the same mixing quantity (0.01%), GOS has higher spreading, lower shear yield stress, and higher compressive and flexural strength than GO. Finally, according to the results of fuzzy matrix analysis, when the concentration of GOS is 0.01%, it presents a more excellent comprehensive performance with the highest score. Among the performance indicators, the most significant improvement was in the flexural properties of cement-based materials, which increased from 8.6 MPa to 12.3 MPa on the 28 d.

4.
Chemosphere ; 288(Pt 2): 132593, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34666072

ABSTRACT

Soil contaminated by hexavalent chromium (Cr(VI)) poses a severe environmental threat owing to the carcinogenic and genotoxic characteristics of Cr(VI). Currently, field application of remediation technologies for Cr(VI) removal or detoxification fails to achieve optimum results owing to various limitations, such as high energy consumption, high chemical cost, secondary pollution, and long treatment duration. Herein, a novel strategy, namely, the capillary-evaporation membrane (CEM) method, which is based on the ubiquitous phenomena of capillarity and evaporation in natural soil environment without external forces, was applied to remove Cr(VI) from contaminated soil. The CEM method enables Cr(VI) dissolved in the soil solution to move upwards through soil pores and inter-particle spaces and get attached to the surface of adsorption membrane under the coupling action of capillarity and evaporation to achieve Cr(VI) removal. The CEM method showed high Cr(VI) removal capacity during 22 days of treatment of bulk soil (47.26%), sandy fraction (34.60%), and silt-clay fraction (52.50%), respectively. Further research on optimization of the CEM process conditions could remarkably improve Cr(VI) remediation performance. For example, the Cr(VI) removal rate increased to 89.04% in bulk soil through prolongation of the remediation period to 61 days. This study demonstrated a new environment-friendly remediation method driven by natural phenomena for Cr(VI)-contaminated soils.


Subject(s)
Chromium , Soil , Capillary Action , Carcinogens
5.
Materials (Basel) ; 12(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583548

ABSTRACT

:Polyvinyl alcohol (PVA) fiber was proposed to enhance the mechanical performance of engineered cementitious composite in this research. A mixture of engineered cementitious composite with better expected performance was made by adding 2% PVA fiber. Mechanics tests, including pressure resistance, fracture resistance, and ultimate tensile strength, were conducted. They reveal that the engineered cementitious composites not only exhibit good pressure resistance, but they also exhibit excellent fracture resistance and strain capability against tensile stress through mechanics tests, including pressure resistance, fracture resistance, and ultimate tensile resistance. To further improve the engineered composites' ductility, attempts to modify the performance of the PVA fiber surface have been made by using a vinyl acetate (VAE) emulsion, a butadiene⁻styrene emulsion, and boric anhydride. Results indicated that the VAE emulsion achieved the best performance improvement. Its use in fiber pre-processing enables the formation of a layer of film with weak acidity, which restrains the hydration of adjacent gel materials, and reduces the strength of transitional areas of the fiber/composite interface, which restricts fiber slippage and pulls out as a result of its growth in age, and reduces hydration levels. Research illustrates that the performance-improvement processing that is studied not only improves the strain of the engineered cementitious composites, but can also reduce the attenuation of the strain against tensile stress.

6.
Sheng Wu Gong Cheng Xue Bao ; 29(11): 1701-5, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24701838

ABSTRACT

In this study, the relationship between mycelium morphology and laccase production was studied. The results indicated that the morphology of P. ferulae pellets was changed when glass beads were added. Laccase production showed higher with spherical mycelium than with filamentous or flocculent mycelium. In addition, the spherical mycelium with a diameter of 0.2-0.4 mm highly affected laccase production. Effect of the composition of culture medium on pellets was investigated and results indicated that various concentrations of glucose, corn meal and wheat bran were important to the formation of pellets in diameter of 0.2-0.4 mm. Besides nutrients, the addition of non-nutritional substrates influenced the distribution of P. ferulae pellets. However, the production of laccase was not promoted by non-nutritional substrates.


Subject(s)
Laccase/biosynthesis , Mycelium/cytology , Pleurotus/cytology , Pleurotus/enzymology , Culture Media , Fermentation , Glass/chemistry , Industrial Microbiology , Mycelium/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...