Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Nat Plants ; 9(11): 1924-1936, 2023 11.
Article in English | MEDLINE | ID: mdl-37884653

ABSTRACT

Salinity is one of the most severe abiotic stresses that adversely affect plant growth and agricultural productivity. The plant Na+/H+ antiporter Salt Overly Sensitive 1 (SOS1) located in the plasma membrane extrudes excess Na+ out of cells in response to salt stress and confers salt tolerance. However, the molecular mechanism underlying SOS1 activation remains largely elusive. Here we elucidate two cryo-electron microscopy structures of rice (Oryza sativa) SOS1, a full-length protein in an auto-inhibited state and a truncated version in an active state. The SOS1 forms a dimeric architecture, with an NhaA-folded transmembrane domain portion in the membrane and an elongated cytosolic portion of multiple regulatory domains in the cytoplasm. The structural comparison shows that SOS1 adopts an elevator transport mechanism accompanied by a conformational transition of the highly conserved Pro148 in the unwound transmembrane helix 5 (TM5), switching from an occluded conformation in the auto-inhibited state to a conducting conformation in the active state. These findings allow us to propose an inhibition-release mechanism for SOS1 activation and elucidate how SOS1 controls Na+ homeostasis in response to salt stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Oryza/metabolism , Antiporters/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Cryoelectron Microscopy , Sodium/metabolism , Gene Expression Regulation, Plant
2.
Redox Rep ; 28(1): 2251234, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37642220

ABSTRACT

BACKGROUND: Metabolic alteration drives renal cell carcinoma (RCC) development, while the impact of melatonin (MLT), a neurohormone secreted during darkness, on RCC cell growth and underlying mechanisms remains unclear. METHODS: We detected concentration of metabolites through metabolomic analyses using UPLC-MS/MS, and the oxygen consumption rate was determined using the Seahorse Extracellular Flux analyzer. RESULTS: We observed that MLT effectively inhibited RCC cell growth both in vitro and in vivo. Additionally, MLT increased ROS levels, suppressed antioxidant enzyme activity, and induced apoptosis. Furthermore, MLT treatment upregulated key TCA cycle metabolites while reducing aerobic glycolysis products, leading to higher oxygen consumption rate, ATP production, and membrane potential. Moreover, MLT treatment suppressed phosphorylation of Akt, mTOR, and p70 S6 Kinase as well as the expression of HIF-1α/VEGFA in RCC cells; these effects were reversed by NAC (ROS inhibitors). Conversely, MLT synergistically inhibited cell growth with sunitinib and counteracted the Warburg effect induced by sunitinib in RCC cells. CONCLUSIONS: In conclusion, our results indicate that MLT treatment reverses the Warburg effect and promotes intracellular ROS production, which leads to the suppression of Akt/mTOR/S6K signaling pathway, induction of cell apoptosis, and synergistically inhibition of cell growth with sunitinib in RCC cells. Overall, this study provides new insights into the mechanisms underlying anti-tumor effect of MLT in RCC cells, and suggests that MLT might be a promising therapeutic for RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Melatonin , Humans , Carcinoma, Renal Cell/drug therapy , Sunitinib , Melatonin/pharmacology , Proto-Oncogene Proteins c-akt , Chromatography, Liquid , Reactive Oxygen Species , Tandem Mass Spectrometry , TOR Serine-Threonine Kinases , Antioxidants , Apoptosis , Kidney Neoplasms/drug therapy
3.
Lancet Digit Health ; 5(8): e515-e524, 2023 08.
Article in English | MEDLINE | ID: mdl-37393162

ABSTRACT

BACKGROUND: Improved markers for predicting recurrence are needed to stratify patients with localised (stage I-III) renal cell carcinoma after surgery for selection of adjuvant therapy. We developed a novel assay integrating three modalities-clinical, genomic, and histopathological-to improve the predictive accuracy for localised renal cell carcinoma recurrence. METHODS: In this retrospective analysis and validation study, we developed a histopathological whole-slide image (WSI)-based score using deep learning allied to digital scanning of conventional haematoxylin and eosin-stained tumour tissue sections, to predict tumour recurrence in a development dataset of 651 patients with distinctly good or poor disease outcome. The six single nucleotide polymorphism-based score, which was detected in paraffin-embedded tumour tissue samples, and the Leibovich score, which was established using clinicopathological risk factors, were combined with the WSI-based score to construct a multimodal recurrence score in the training dataset of 1125 patients. The multimodal recurrence score was validated in 1625 patients from the independent validation dataset and 418 patients from The Cancer Genome Atlas set. The primary outcome measured was the recurrence-free interval (RFI). FINDINGS: The multimodal recurrence score had significantly higher predictive accuracy than the three single-modal scores and clinicopathological risk factors, and it precisely predicted the RFI of patients in the training and two validation datasets (areas under the curve at 5 years: 0·825-0·876 vs 0·608-0·793; p<0·05). The RFI of patients with low stage or grade is usually better than that of patients with high stage or grade; however, the RFI in the multimodal recurrence score-defined high-risk stage I and II group was shorter than in the low-risk stage III group (hazard ratio [HR] 4·57, 95% CI 2·49-8·40; p<0·0001), and the RFI of the high-risk grade 1 and 2 group was shorter than in the low-risk grade 3 and 4 group (HR 4·58, 3·19-6·59; p<0·0001). INTERPRETATION: Our multimodal recurrence score is a practical and reliable predictor that can add value to the current staging system for predicting localised renal cell carcinoma recurrence after surgery, and this combined approach more precisely informs treatment decisions about adjuvant therapy. FUNDING: National Natural Science Foundation of China, and National Key Research and Development Program of China.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Prognosis , Retrospective Studies , Biomarkers, Tumor , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology
4.
Cell ; 186(12): 2656-2671.e18, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37295403

ABSTRACT

Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.


Subject(s)
Brassica napus , Plasmodiophorida , Cryoelectron Microscopy , Lead , Brassica napus/genetics , Plasmodiophorida/physiology , Ion Channels , Plant Diseases
5.
Nature ; 613(7944): 474-478, 2023 01.
Article in English | MEDLINE | ID: mdl-36653568

ABSTRACT

Photons with spin angular momentum possess intrinsic chirality, which underpins many phenomena including nonlinear optics1, quantum optics2, topological photonics3 and chiroptics4. Intrinsic chirality is weak in natural materials, and recent theoretical proposals5-7 aimed to enlarge circular dichroism by resonant metasurfaces supporting bound states in the continuum that enhance substantially chiral light-matter interactions. Those insightful works resort to three-dimensional sophisticated geometries, which are too challenging to be realized for optical frequencies8. Therefore, most of the experimental attempts9-11 showing strong circular dichroism rely on false/extrinsic chirality by using either oblique incidence9,10 or structural anisotropy11. Here we report on the experimental realization of true/intrinsic chiral response with resonant metasurfaces in which the engineered slant geometry breaks both in-plane and out-of-plane symmetries. Our result marks, to our knowledge, the first observation of intrinsic chiral bound states in the continuum with near-unity circular dichroism of 0.93 and a high quality factor exceeding 2,663 for visible frequencies. Our chiral metasurfaces may lead to a plethora of applications in chiral light sources and detectors, chiral sensing, valleytronics and asymmetric photocatalysis.

6.
Zhongguo Zhen Jiu ; 43(1): 95-100, 2023 Jan 01.
Article in Chinese | MEDLINE | ID: mdl-36633247

ABSTRACT

Focusing on the phenomenon of "de-acupoints" of the needle insertion sites in Fu's subcutaneous needling (FSN), the authors allocated the evolution and characteristics of the needle insertion sites of FSN. From six aspects, named morphology and structure, location, nomenclature, numbers and meridian tropism, indications and acupuncture manipulations, the comparison was made between the insertion sites of FSN and traditional acupoints. It is believed: ①The needle insertion sites of FSN has the basic attributes of acupoint, which not only refers to the operation site, but also indicates the reaction of disease; moreover, it is the treatment site with significant therapeutic effect. ②The optimized sites of insertion in FSN should be named differently and their locations and numbers should be specified relatively. ③The insertion sites of FSN should be further intersected and integrated with traditional acupoints, and a part of traditional acupoints should become the insertion sites of FSN. ④Accepting and integrating the insertion sites of FSN, and expanding the scope of traditional acupoints may be the new project in the research of traditional acupoints.


Subject(s)
Acupuncture Therapy , Acupuncture , Meridians , Moxibustion , Acupuncture Points
7.
J Orthop Surg Res ; 17(1): 249, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35473595

ABSTRACT

BACKGROUND: The obesity paradox, which suggests that high body weight is positively associated with survival in some diseases, has not been proven in patients with hip fracture. In this study, meta-analysis of previous studies on the impacts of body weight on postoperative mortality following hip fracture surgery in older adults was conducted. METHODS: PubMed, Embase, and Cochrane library were searched for studies investigating the correlation between mortality after hip fracture surgery and body weight. The search main items included: ("Body mass index" OR "BMI" or "body weight") and ("hip fracture" or "hip fractures"). Studies contained data on short-term (≤ 30-day) and long-term (≥ 1 year) mortality after hip fracture and its association with distinct body weight or BMI groups were reported as full-text articles were included in this meta-analysis. RESULTS: Eleven separate studies were included. The definitions of underweight and obesity differed among the included studies, but the majority of the enrolled studies used the average body weight definition of a BMI of 18.5 to 24.9 kg/m2; underweight referred to a BMI of < 18.5 kg/m2; and obesity pertained to a BMI of > 30 kg/m2. Based on the generalized definitions of body-weight groups from the enrolled studies, the group with obesity had lower long-term (odds ratio [OR]: 0.63, 95% CI: 0.50-0.79, P < 0.00001) and short-term (OR: 0.63, 95% CI: 0.58-0.68, P ≤ 0.00001) mortality rates after hip fracture surgery when compared with patients with average-weight group. However, compared with the average-weight group, the underweight group had higher long-term (OR: 1.51, 95% CI: 1.15-1.98, P=0.003) and short-term (OR: 1.49, 95% CI: 1.29-1.72, P<0.00001) mortality rates after hip fracture surgery. CONCLUSIONS: Current evidence demonstrates an inverse relation of body weight with long-term and short-term mortality after hip fracture surgery in older adults.


Subject(s)
Hip Fractures , Thinness , Aged , Body Mass Index , Hip Fractures/complications , Humans , Obesity/complications , Risk Factors , Thinness/complications
8.
Sci Adv ; 8(9): eabm3238, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35235352

ABSTRACT

Aluminum-activated malate transporters (ALMTs) form an anion channel family that plays essential roles in diverse functions in plants. Arabidopsis ALMT12, also named QUAC1 (quick anion channel 1), regulates stomatal closure in response to environmental stimuli. However, the molecular basis of ALMT12/QUAC1 activity remains elusive. Here, we describe the cryo-EM structure of ALMT12/QUAC1 from Glycine max at 3.5-Å resolution. GmALMT12/QUAC1 is a symmetrical dimer, forming a single electropositive T-shaped pore across the membrane. The transmembrane and cytoplasmic domains are assembled into a twisted two-layer architecture, with their associated dimeric interfaces nearly perpendicular. GmALMT12/QUAC1-mediated currents display rapid kinetics of activation/deactivation and a bell-shaped voltage dependency, reminiscent of the rapid (R)-type anion currents. Our structural and functional analyses reveal a domain-twisting mechanism for malate-mediated activation. Together, our study uncovers the molecular basis for a previously uncharacterized class of anion channels and provides insights into the gating and modulation of the ALMT12/QUAC1 anion channel.

9.
Mol Cancer ; 20(1): 169, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922539

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been indicated as potentially critical mediators in various types of tumor progression, generally acting as microRNA (miRNA) sponges to regulate downstream gene expression. However, the aberrant expression profile and dysfunction of circRNAs in human clear cell renal cell carcinoma (ccRCC) need to be further investigated. This study mined key prognostic circRNAs and elucidates the potential role and molecular mechanism of circRNAs in regulating the proliferation and metastasis of ccRCC. METHODS: circCHST15 (hsa_circ_0020303) was identified by mining two circRNA microarrays from the Gene Expression Omnibus database and comparing matched tumor versus adjacent normal epithelial tissue pairs or matched primary versus metastatic tumor tissue pairs. These results were validated by quantitative real-time polymerase chain reaction and agarose gel electrophoresis. We demonstrated the biological effect of circCHST15 in ccRCC both in vitro and in vivo. To test the interaction between circCHST15 and miRNAs, we conducted a number of experiments, including RNA pull down assay, dual-luciferase reporter assay and fluorescence in situ hybridization. RESULTS: The expression of circCHST15 was higher in ccRCC tissues compared to healthy adjacent kidney tissue and higher in RCC cell lines compared to normal kidney cell lines. The level of circCHST15 was positively correlated with aggressive clinicopathological characteristics, and circCHST15 served as an independent prognostic indicator for overall survival and progression-free survival in patients with ccRCC after surgical resection. Our in vivo and in vitro data indicate that circCHST15 promotes the proliferation, migration, and invasion of ccRCC cells. Mechanistically, we found that circCHST15 directly interacts with miR-125a-5p and acts as a microRNA sponge to regulate EIF4EBP1 expression. CONCLUSIONS: We found that sponging of miR-125a-5p to promote EIF4EBP1 expression is the underlying mechanism of hsa_circ_0020303-induced ccRCC progression. This prompts further investigation of circCHST15 as a potential prognostic biomarker and therapeutic target for ccRCC.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Biomarkers, Tumor , Carcinoma, Renal Cell/genetics , Cell Cycle Proteins/genetics , Kidney Neoplasms/genetics , Membrane Glycoproteins/genetics , MicroRNAs/genetics , RNA, Circular , Sulfotransferases/genetics , Adult , Aged , Animals , Carcinoma, Renal Cell/diagnosis , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Kidney Neoplasms/diagnosis , Male , Mice , Middle Aged , Models, Biological , Neoplasm Grading , Neoplasm Staging , Prognosis , RNA Interference
10.
Zhongguo Zhen Jiu ; 41(12): 1317-20, 2021 Dec 12.
Article in Chinese | MEDLINE | ID: mdl-34936267

ABSTRACT

OBJECTIVE: To observe the effect of horizontal penetration needling at vertigo auditory area and balance area on residual dizziness after successful repositioning maneuver in patients with benign paroxysmal positional vertigo (BPPV). METHODS: Sixty-six patients with residual dizziness after successful repositioning maneuver for BPPV were randomly divided into an observation group (34 cases, 1 case dropped off) and a control group (32 cases, 2 cases dropped off). The patients in the observation group were treated with horizontal penetration needling at vertigo auditory area and balance area, once every other day; three times were taken as a course of treatment, and two courses of treatment were given. The patients in the control group received no acupuncture and medication. The dizziness handicap inventory (DHI) and visual analogue scale (VAS) scores were observed before treatment and after 1 and 2 courses of treatment. RESULTS: Except for the emotional score of DHI in the control group after 1 course of treatment, the sub item scores and total scores of DHI and VAS scores in the two groups after treatment were lower than those before treatment (P<0.01, P<0.05). After 1 and 2 courses of treatment, the function scores, emotion scores, total scores of DHI and VAS scores in the observation group were lower than those in the control group (P<0.01). CONCLUSION: Whether acupuncture or not, residual dizziness after repositioning maneuver for BPPV can be relieved within 2 weeks; horizontal penetration needling at vertigo auditory area and balance area could improve dizziness symptoms and shorten the course of disease.


Subject(s)
Benign Paroxysmal Positional Vertigo , Dizziness , Benign Paroxysmal Positional Vertigo/therapy , Dizziness/therapy , Humans , Patient Positioning , Vascular Surgical Procedures
11.
J Orthop Surg Res ; 16(1): 681, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34794459

ABSTRACT

INTRODUCTION: The neutrophil-to-lymphocyte ratio (NLR) is a crucial prognosis predictor following several major operations. However, the association between NLR and the outcome after hip fracture surgery is unclear. In this meta-analysis, we investigated the correlation between NLR and postoperative mortality in geriatric patients following hip surgery. METHOD: PubMed, Embase, Cochrane library, and Google Scholar were searched for studies up to June 2021 reporting the correlation between NLR and postoperative mortality in elderly patients undergoing surgery for hip fracture. Data from studies reporting the mean of NLR and its 95% confidence interval (CI) were pooled. Both long-term (≥ 1 year) and short-term (≤ 30 days) mortality rates were included for analysis. RESULT: Eight retrospective studies comprising a total of 1563 patients were included. Both preoperative and postoperative NLRs (mean difference [MD]: 2.75, 95% CI: 0.23-5.27; P = 0.03 and MD: 2.36, 95% CI: 0.51-4.21; P = 0.01, respectively) were significantly higher in the long-term mortality group than in the long-term survival group. However, no significant differences in NLR were noted between the short-term mortality and survival groups (MD: - 1.02, 95% CI: - 3.98 to 1.93; P = 0.5). CONCLUSION: Higher preoperative and postoperative NLRs were correlated with a higher risk of long-term mortality following surgery for hip fracture in the geriatric population, suggesting the prognostic value of NLR for long-term survival. Further studies with well-controlled confounders are warranted to clarify the predictive value of NLR in clinical practice in geriatric patients with hip fracture.


Subject(s)
Hip Fractures , Lymphocytes , Neutrophils , Orthopedic Procedures/mortality , Aged , Aged, 80 and over , Biomarkers/blood , Hip Fractures/blood , Hip Fractures/immunology , Hip Fractures/mortality , Hip Fractures/surgery , Humans , Leukocyte Count , Orthopedic Procedures/adverse effects , Postoperative Period , Predictive Value of Tests , Prognosis , Retrospective Studies
12.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34810257

ABSTRACT

Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain-deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , CDC2 Protein Kinase/metabolism , Centromere/metabolism , Centromere Protein A/genetics , Chromosomal Proteins, Non-Histone/physiology , Chromosome Segregation , Histones/metabolism , Interphase , Kinetochores/physiology , Microtubule-Associated Proteins/physiology , Mitosis , Phosphorylation , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/physiology
13.
Chin J Nat Med ; 19(10): 721-731, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34688462

ABSTRACT

Chitooligosaccharide-zinc (COS·Zn) is a powerful anti-oxidant and anti-aging scavenger, whose anti-oxidative ability immensely exceeds vitamin C. Therefore, this study was aimed to investigate the protective effects of COS·Zn against premature ovarian failure (POF) and potential mechanisms. Female KM adult mice were divided into the following groups: a treatment group (150 mg·kg-1·d-1 COS·Zn), a treatment group (300 mg·kg-1·d-1 COS·Zn), a prevention group, two control groups and two CY/BUS groups. COS·Zn (150, 300 mg·kg-1·d-1) and COS·Zn (300 mg·kg-1·d-1) were therapeutically and preventatively administered to POF mice in the treatment and prevention studies, respectively. All the groups were administered for 21 days. Fewer primary and secondary follicles were observed in the COS·Zn-treated groups (including the treatment and prevention groups) than those of the control groups. Meanwhile, the ovarian index and the levels of FSH and LH notably increased in the treatment and prevention groups compared with those in the CY/BUS group. The levels of MVH, OCT4 and PCNA in the treatment group (300·kg-1·d-1 COS·Zn) and MVH in the prevention group remarkably increased compared with those in the CY/BUS groups. Meanwhile, the levels of P53 and P16 protein were down-regulated in the treatment and prevention groups compared with those in the CY/BUS groups. Additionally, the amounts of Sestrin2 (SESN2) and SOD2 protein were obviously higher in the treatment group (150 mg·kg-1·d-1 COS·Zn) than those in the CY/BUS groups. Similarly, the amounts of NRF2 and SESN2 protein were up-regulated in the prevention group. Besides, an increased GSH level was observed in the two treatment groups, compared with that in the CY/BUS groups, and the same trend was also present in the prevention group. Taken together, COS·Zn improves the ovarian and follicular development through regulating the SESN2/NRF2 signaling pathway. These results suggest the role of COS·Zn as a novel agent for the treatment and prevention of POF.


Subject(s)
Primary Ovarian Insufficiency , Animals , Chitosan , Female , Humans , Mice , NF-E2-Related Factor 2/genetics , Nuclear Proteins , Oligosaccharides , Primary Ovarian Insufficiency/drug therapy , Signal Transduction , Zinc
14.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34237133

ABSTRACT

Increasing evidences show the clinical significance of the interaction between hypoxia and immune in clear cell renal cell carcinoma (ccRCC) microenvironment. However, reliable prognostic signatures based on a combination of hypoxia and immune have not been well established. Moreover, many studies have only used RNA-seq profiles to screen the prognosis feature of ccRCC. Presently, there is no comprehensive analysis of multiomics data to mine a better one. Thus, we try and get it. First, t-SNE and ssGSEA analysis were used to establish tumor subtypes related to hypoxia-immune, and we investigated the hypoxia-immune-related differences in three types of genetic or epigenetic characteristics (gene expression profiles, somatic mutation, and DNA methylation) by analyzing the multiomics data from The Cancer Genome Atlas (TCGA) portal. Additionally, a four-step strategy based on lasso regression and Cox regression was used to construct a satisfying prognostic model, with average 1-year, 3-year and 5-year areas under the curve (AUCs) equal to 0.806, 0.776 and 0.837. Comparing it with other nine known prognostic biomarkers and clinical prognostic scoring algorithms, the multiomics-based signature performs better. Then, we verified the gene expression differences in two external databases (ICGC and SYSU cohorts). Next, eight hub genes were singled out and seven hub genes were validated as prognostic genes in SYSU cohort. Furthermore, it was indicated high-risk patients have a better response for immunotherapy in immunophenoscore (IPS) analysis and TIDE algorithm. Meanwhile, estimated by GDSC and cMAP database, the high-risk patients showed sensitive responses to six chemotherapy drugs and six candidate small-molecule drugs. In summary, the signature can accurately predict the prognosis of ccRCC and may shed light on the development of novel hypoxia-immune biomarkers and target therapy of ccRCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell/etiology , Carcinoma, Renal Cell/metabolism , Disease Susceptibility , Kidney Neoplasms/etiology , Kidney Neoplasms/metabolism , Aged , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/therapy , DNA Methylation , Disease Susceptibility/immunology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genomics , Humans , Hypoxia/genetics , Hypoxia/metabolism , Immunophenotyping , Kaplan-Meier Estimate , Kidney Neoplasms/diagnosis , Kidney Neoplasms/therapy , Male , Middle Aged , Molecular Targeted Therapy , Neoplasm Staging , Precision Medicine , Prognosis , ROC Curve , Transcriptome , Tumor Microenvironment
15.
Cell ; 184(13): 3528-3541.e12, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33984278

ABSTRACT

Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Calcium/metabolism , Carrier Proteins/metabolism , Disease Resistance/immunology , Plant Immunity , Signal Transduction , Animals , Cell Death , Cell Membrane/metabolism , Cell Membrane Permeability , Glutamic Acid/metabolism , Lipid Bilayers/metabolism , Oocytes/metabolism , Plant Cells/metabolism , Protein Multimerization , Protoplasts/metabolism , Reactive Oxygen Species/metabolism , Single Molecule Imaging , Vacuoles/metabolism , Xenopus
16.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33926963

ABSTRACT

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Membrane Proteins/genetics , Plant Leaves/genetics , Plant Stomata/genetics , Abscisic Acid/metabolism , Anions/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/ultrastructure , Brachypodium/genetics , Brachypodium/ultrastructure , Carbon Dioxide/metabolism , Cryoelectron Microscopy , Ion Transport/genetics , Membrane Proteins/ultrastructure , Phosphorylation/genetics , Plant Leaves/ultrastructure , Plant Stomata/ultrastructure , Protein Conformation , Signal Transduction/genetics
17.
Genetics ; 218(1)2021 05 17.
Article in English | MEDLINE | ID: mdl-33693625

ABSTRACT

Heterochromatin, a transcriptionally silenced chromatin domain, is important for genome stability and gene expression. Histone 3 lysine 9 methylation (H3K9me) and histone hypoacetylation are conserved epigenetic hallmarks of heterochromatin. In fission yeast, RNA interference (RNAi) plays a key role in H3K9 methylation and heterochromatin silencing. However, how RNAi machinery and histone deacetylases (HDACs) are coordinated to ensure proper heterochromatin assembly is still unclear. Previously, we showed that Dpb4, a conserved DNA polymerase epsilon subunit, plays a key role in the recruitment of HDACs to heterochromatin during S phase. Here, we identified a novel RNA-binding protein Dri1 that interacts with Dpb4. GFP-tagged Dri1 forms distinct foci mostly in the nucleus, showing a high degree of colocalization with Swi6/Heterochromatin Protein 1. Deletion of dri1+ leads to defects in silencing, H3K9me, and heterochromatic siRNA generation. We also showed that Dri1 physically associates with heterochromatic transcripts, and is required for the recruitment of the RNA-induced transcriptional silencing (RITS) complex via interacting with the complex. Furthermore, loss of Dri1 decreases the association of the Sir2 HDAC with heterochromatin. We further demonstrated that the C-terminus of Dri1 that includes an intrinsically disordered (IDR) region and three zinc fingers is crucial for its role in silencing. Together, our evidences suggest that Dri1 facilitates heterochromatin assembly via the RNAi pathway and HDAC.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Heterochromatin/metabolism , Histones/genetics , Acetylation , Cell Nucleus/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , DNA Polymerase II/metabolism , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/metabolism , Methylation , RNA Interference , RNA, Small Interfering/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
18.
Genomics ; 113(2): 740-754, 2021 03.
Article in English | MEDLINE | ID: mdl-33516849

ABSTRACT

Clear-cell renal cell carcinoma (ccRCC) carries a variable prognosis. Prognostic biomarkers can stratify patients according to risk, and can provide crucial information for clinical decision-making. We screened for an autophagy-related long non-coding lncRNA (lncRNA) signature to improve postoperative risk stratification in The Cancer Genome Atlas (TCGA) database. We confirmed this model in ICGC and SYSU cohorts as a significant and independent prognostic signature. Western blotting, autophagic-flux assay and transmission electron microscopy were used to verify that regulation of expression of 8 lncRNAs related to autophagy affected changes in autophagic flow in vitro. Our data suggest that 8-lncRNA signature related to autophagy is a promising prognostic tool in predicting the survival of patients with ccRCC. Combination of this signature with clinical and pathologic parameters could aid accurate risk assessment to guide clinical management, and this 8-lncRNAs signature related to autophagy may serve as a therapeutic target.


Subject(s)
Autophagy/genetics , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , RNA, Long Noncoding/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , RNA, Long Noncoding/metabolism
19.
J Prosthet Dent ; 126(6): 742-748, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33139056

ABSTRACT

STATEMENT OF PROBLEM: The immediate loading protocol for 2-implant mandibular overdentures has been widely reported. Nevertheless, the clinical effects reported in different articles are quite different. PURPOSE: The purpose of this systematic review and meta-analysis of randomized controlled trials (RCTs) was to compare the clinical effects of immediate and delayed loading of 2-implant mandibular overdentures. MATERIAL AND METHODS: The review followed the guidelines of Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). PubMed, Cochrane Library, Web of Science, Embase, Scopus, ScienceDirect, CBM, CNKI, and Wan Fang databases were searched electronically for RCTs published before March 25, 2020. Two authors independently conducted literature screening, quality assessment, and data extraction. The outcomes of interest were implant failure rate, marginal bone loss (MBL), implant stability quotient (ISQ), periotest value (PTV), and patient satisfaction. RESULTS: A total of 2498 unduplicated records were identified. After full-text analysis, 7 eligible RCTs were included. All studies were followed for at least 12 months, and the meta-analysis was based on this. The meta-analysis showed that the implant failure rate in the immediate group was higher than that in the delayed group, but there was no statistically significant difference (I2=0%; n=7; risk difference [RD]=0.03; 95% confidence interval [CI]=-0.01 to 0.08). The difference of MBL between immediate and delayed loading was not significant (I2=88%; n=6; mean difference [MD]=-0.04; 95% CI=-0.16 to 0.24). Because of the limited articles reporting on ISQ, PTV, and patient satisfaction, no quantitative analysis was conducted for these outcomes. CONCLUSIONS: Although the implant failure rate was more likely to favor the delayed group, available evidence indicates no statistical difference in implant failure and marginal bone loss between immediate and delayed loading protocols.


Subject(s)
Dental Implants , Denture, Overlay , Humans , Dental Implantation, Endosseous , Dental Prosthesis, Implant-Supported , Randomized Controlled Trials as Topic
20.
Mol Cell ; 79(5): 728-740.e6, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32721385

ABSTRACT

Cytosine base editors (CBEs) generate C-to-T nucleotide substitutions in genomic target sites without inducing double-strand breaks. However, CBEs such as BE3 can cause genome-wide off-target changes via sgRNA-independent DNA deamination. By leveraging the orthogonal R-loops generated by SaCas9 nickase to mimic actively transcribed genomic loci that are more susceptible to cytidine deaminase, we set up a high-throughput assay for assessing sgRNA-independent off-target effects of CBEs in rice protoplasts. The reliability of this assay was confirmed by the whole-genome sequencing (WGS) of 10 base editors in regenerated rice plants. The R-loop assay was used to screen a series of rationally designed A3Bctd-BE3 variants for improved specificity. We obtained 2 efficient CBE variants, A3Bctd-VHM-BE3 and A3Bctd-KKR-BE3, and the WGS analysis revealed that these new CBEs eliminated sgRNA-independent DNA off-target edits in rice plants. Moreover, these 2 base editor variants were more precise at their target sites by producing fewer multiple C edits.


Subject(s)
Cytidine Deaminase/genetics , Cytosine , Gene Editing/methods , Minor Histocompatibility Antigens/genetics , Oryza/genetics , Cytosine/chemistry , Genes, Plant , Humans , Mutation , RNA, Guide, Kinetoplastida/chemistry , RNA, Plant/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...