Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Drug Deliv Transl Res ; 14(7): 1940-1953, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38161195

ABSTRACT

A patient-friendly and efficient treatment method for patients with spinocerebellar ataxia type 3 (SCA3) was provided through a nose-to-brain liposomal system. Initially, PGK1 was overexpressed in HEK 293-84Q-GFP diseased cells (HEK 293-84Q-GFP-PGK1 cells) to confirm its effect on the diseased protein polyQ. A decrease in polyQ expression was demonstrated in HEK 293-84Q-GFP-PGK1 cells compared to HEK 293-84Q-GFP parental cells. Subsequently, PGK1 was encapsulated in a liposomal system to evaluate its therapeutic efficiency in SCA3. The optimized liposomes exhibited a significantly enhanced positive charge, facilitating efficient intracellular protein delivery to the cells. The proteins were encapsulated within the liposomes using an optimized method involving a combination of heat shock and sonication. The liposomal system was further demonstrated to be deliverable to the brain via intranasal administration. PGK1/liposomes were intranasally delivered to SCA3 mice, which subsequently exhibited an amelioration of motor impairment, as assessed via the accelerated rotarod test. Additionally, fewer shrunken morphology Purkinje cells and a reduction in polyQ expression were observed in SCA3 mice that received PGK1/liposomes but not in the untreated, liposome-only, or PGK1-only groups. This study provides a non-invasive route for protein delivery and greater delivery efficiency via the liposomal system for treating neurodegenerative diseases.


Subject(s)
Administration, Intranasal , Brain , Liposomes , Machado-Joseph Disease , Phosphoglycerate Kinase , Animals , Humans , Phosphoglycerate Kinase/genetics , Brain/metabolism , HEK293 Cells , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , Mice , Peptides/administration & dosage , Peptides/chemistry
2.
Biomater Adv ; 156: 213722, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101076

ABSTRACT

Noninvasive lung drug delivery is critical for treating respiratory diseases. Pluronic-based copolymers have been used as multifunctional materials for medical and biological applications. However, the Pluronic F127-based hydrogel is rapidly degraded, adversely affecting the mechanical stability for prolonged drug release. Therefore, this study designed two thermosensitive copolymers by modifying the Pluronic F127 terminal groups with carboxyl (ADF127) or amine groups (EDF127) to improve the viscosity and storage modulus of drug formulations. ß-alanine and ethylenediamine were conjugated at the terminal of Pluronic F127 using a two-step acetylation process, and the final copolymers were characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectra. According to the 1H NMR spectra, Pluronic F127 was functionalized to form ADF127 and EDF127 with 85 % and 71 % functionalization degrees, respectively. Rheological studies revealed that the ADF127 (15 wt%) and EDF127 (15 wt%) viscosities increased from 1480 Pa.s (Pluronic F127) to 1700 Pa.s and 1800 Pa.s, respectively. Furthermore, the elastic modulus of ADF127 and EDF127 increased, compared with that of native Pluronic F127 with the addition of 5 % mucin, particularly for ADF127, thereby signifying the stronger adhesive nature of ADF127 and EDF127 with mucin. Additionally, ADF127 and EDF127 exhibited a decreased gelation temperature, decreasing from 33 °C (Pluronic F127 at 15 wt%) to 24 °C. Notably, the in vitro ADF127 and EDF127 drug release was prolonged (95 %; 48 h) by the hydrogel encapsulation of the liposome-Bdph combined with mucin, and the intermolecular hydrogen bonding between the mucin and the hydrogel increased the retention time and stiffness of the hydrogels. Furthermore, ADF127 and EDF127 incubated with NIH-3T3 cells exhibited biocompatibility within 2 mg/mL, compared with Pluronic F127. The nasal administration method was used to examine the biodistribution of the modified hydrogel carrying liposomes or exosomes with fluorescence using the IVIS system. Drug accumulation in the lungs decreased in the following order: ADF127 > EDF127 > liposomes or exosomes alone. These results indicated that the carboxyl group-modified Pluronic F127 enabled well-distributed drug accumulation in the lungs, which is beneficial for intranasal administration routes in treating diseases such as lung fibrosis.


Subject(s)
Liposomes , Poloxamer , Mice , Animals , Poloxamer/chemistry , Hydrogels , Mucins , Tissue Distribution , Polymers , Lung
3.
Eur J Pharm Sci ; 191: 106608, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37832855

ABSTRACT

Exosome therapy is a novel trend in regeneration medicine. However, identifying a suitable biomarker that can associate the therapeutic efficacy of exosomes with SCA3/MJD is essential. In this study, parental cells were preconditioned with butylidenephthalide (Bdph) for exosome preparation to evaluate the therapeutic effect of SCA3/MJD. The therapeutic agent hsa-miRNA-6780-5p was enriched up to 98-fold in exosomes derived from butylidenephthalide (Bdph)-preconditioned human olfactory ensheathing cells (hOECs) compared with that in naïve hOECs exosomes. The particle sizes of exosomes derived from naïve hOECs and those derived from hOECs preconditioned with Bdph were approximately 113.0 ± 3.5 nm and 128.9 ± 0.7 nm, respectively. A liposome system was used to demonstrate the role of hsa-miRNA-6780-5p, wherein hsa-miRNA-6780-5p was found to enhance autophagy and inhibit the expression of spinocerebellar ataxia type 3 (SCA3) disease proteins with the polyglutamine (polyQ) tract. Exosomes with enriched hsa-miRNA-6780-5p were further applied to HEK-293-84Q cells, leading to decreased expression of polyQ and increased autophagy. The results were reversed when 3MA, an autophagy inhibitor, was added to the cells treated with hsa-miRNA-6780-5p-enriched exosomes, indicating that the decreased polyQ expression was modulated via autophagy. SCA3 mice showed improved motor coordination behavior when they intracranially received exosomes enriched with hsa-miRNA-6780-5p. SCA3 mouse cerebellar tissues treated with hsa-miRNA-6780-5p-enriched exosomes showed decreased expression of polyQ and increased expression of LC3II/I, an autophagy marker. In conclusion, our findings can serve as a basis for developing an alternative therapeutic strategy for SCA3 disease treatment using miRNA-enriched exosomes derived from chemically preconditioned cells.


Subject(s)
Exosomes , Machado-Joseph Disease , MicroRNAs , Humans , Mice , Animals , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/metabolism , Exosomes/metabolism , HEK293 Cells , MicroRNAs/metabolism
4.
Colloids Surf B Biointerfaces ; 213: 112391, 2022 May.
Article in English | MEDLINE | ID: mdl-35158218

ABSTRACT

Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR)-based tumor targeted 4.5 generation poly(amidoamine) dendrimer(4.5GDP)-cisplatin (Cis-pt) nanocomplex (NC) (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs were examined via FTIR spectroscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The conjugation of Cis-pt with 4.5GDP was confirmed using carbon NMR spectroscopy. The tumor-specific 4.5GDP-Cis-pt NC provided 45%and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed for the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NPs were biocompatible with different cell lines, even at a high concentration (200 µg mL-1). However, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL-1) significantly increased the cytotoxicity against the cancer cells in a dose-dependent manner with the increasing AC-IO-Ova NPs concentrations. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, AC-IO-Ova NPs might assist the efficiency of anticancer cells, inducing an innate immune response via M1 macrophage polarization. We provide a novel synergistic chemoimmunotherapeutic strategy to enhance the anticancer efficacy of cisplatin via a chemotherapeutic agent 4.5GDP-Cis-pt NC and induce proinflammatory cytokines stimulating innate immunity through AC-IO-Ova NPs against tumors.


Subject(s)
Dendrimers , Nanoparticles , Neoplasms , Cell Survival , Cisplatin/pharmacology , Dendrimers/pharmacology , Humans , Magnetic Iron Oxide Nanoparticles , Nanoparticles/chemistry , Neoplasms/therapy , Ovalbumin , Polyamines
5.
Int J Mol Sci ; 21(12)2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32575820

ABSTRACT

Although butylidenephthalide (BP) is an efficient anticancer drug, its poor bioavailability renders it ineffective for treating drug-resistant brain tumors. However, this problem is overcome through the use of noninvasive delivery systems, including intranasal administration. Herein, the bioavailability, drug stability, and encapsulation efficiency (EE, up to 95%) of BP were improved by using cyclodextrin-encapsulated BP in liposomal formulations (CDD1). The physical properties and EE of the CDD1 system were investigated via dynamic light scattering, transmission electron microscopy, UV-Vis spectroscopy, and nuclear magnetic resonance spectroscopy. The cytotoxicity was examined via MTT assay, and the cellular uptake was observed using fluorescence microscopy. The CDD1 system persisted for over 8 h in tumor cells, which was a considerable improvement in the retention of the BP-containing cyclodextrin or the BP-containing liposomes, thereby indicating a higher BP content in CDD1. Nanoscale CDD1 formulations were administered intranasally to nude mice that had been intracranially implanted with temozolomide-resistant glioblastoma multiforme cells, resulting in increased median survival time. Liquid chromatography-mass spectrometry revealed that drug biodistribution via intranasal delivery increased the accumulation of BP 10-fold compared to oral delivery methods. Therefore, BP/cyclodextrin/liposomal formulations have potential clinical applications for treating drug-resistant brain tumors.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Brain/metabolism , Drug Delivery Systems , Phthalic Anhydrides/pharmacokinetics , Animals , Antineoplastic Agents/administration & dosage , Biological Availability , Brain/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cyclodextrins/chemistry , Glioblastoma/drug therapy , Glioblastoma/metabolism , Liposomes/chemistry , Male , Mice, Inbred BALB C , Mice, Nude , Phthalic Anhydrides/administration & dosage , Tissue Distribution
6.
Int J Mol Sci ; 21(9)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357546

ABSTRACT

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive motor disease with no broadly effective treatment. However, most current therapies are based on symptoms rather than the underlying disease mechanisms. In this review, we describe potential therapeutic strategies based on known pathological biomarkers and related pathogenic processes. The three major conclusions from the current studies are summarized as follows: (i) for the drugs currently being tested in clinical trials; a weak connection was observed between drugs and SCA3/MJD biomarkers. The only two exceptions are the drugs suppressing glutamate-induced calcium influx and chemical chaperon. (ii) For most of the drugs that have been tested in animal studies, there is a direct association with pathological biomarkers. We further found that many drugs are associated with inducing autophagy, which is supported by the evidence of deficient autophagy biomarkers in SCA3/MJD, and that there may be more promising therapeutics. (iii) Some reported biomarkers lack relatively targeted drugs. Low glucose utilization, altered amino acid metabolism, and deficient insulin signaling are all implicated in SCA3/MJD, but there have been few studies on treatment strategies targeting these abnormalities. Therapeutic strategies targeting multiple pathological SCA3/MJD biomarkers may effectively block disease progression and preserve neurological function.


Subject(s)
Biomarkers/metabolism , Genetic Markers , Machado-Joseph Disease/drug therapy , Autophagy , Clinical Trials as Topic , Genetic Markers/drug effects , Humans , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Molecular Targeted Therapy , Signal Transduction/drug effects
7.
Ci Ji Yi Xue Za Zhi ; 32(2): 113-120, 2020.
Article in English | MEDLINE | ID: mdl-32269942

ABSTRACT

Exosomes, 60-200-nm extracellular vesicles secreted from cells, have been used as an active pharmaceutical ingredient or drug carrier in disease treatment. Human- and plant-derived exosomes are registered in clinical trials, but more complete reports are available for human-derived exosomes. Because exosomes act as vesicles and carry cell secreting components, they have been used as drug or peptide vehicles to treat diseases. The dendritic cells (DCs) and mesenchymal stem cells (MSCs) are two popular cell sources for exosome preparation. Exosomes from DCs can initiate inflammation in patients, particularly in patients with cancer, as they contain the tumor antigen to induce specific inflammation response. A well-established cell bank of MSCs is available, and these cells can be used as an alternative source for exosome preparation. The major application of MSC-derived exosomes is in inflammation treatment. Exosomes in clinical trials need to comply with good manufacturing practice (GMP). Three important issues are prevalent in GMP for exosomes, i.e., upstream of cell cultivation process, downstream of the purification process, and exosome quality control. This paper concisely reviews exosome development, including exosome generation and clinical trial application.

8.
Cell Transplant ; 29: 963689720907565, 2020.
Article in English | MEDLINE | ID: mdl-32233795

ABSTRACT

Stem cell transplantation is a fast-developing technique, which includes stem cell isolation, purification, and storage, and it is in high demand in the industry. In addition, advanced applications of stem cell transplantation, including differentiation, gene delivery, and reprogramming, are presently being studied in clinical trials. In contrast to somatic cells, stem cells are self-renewing and have the ability to differentiate; however, the molecular mechanisms remain unclear. SOX2 (sex-determining region Y [SRY]-box 2) is one of the well-known reprogramming factors, and it has been recognized as an oncogene associated with cancer induction. The exclusion of SOX2 in reprogramming methodologies has been used as an alternative cancer treatment approach. However, the manner by which SOX2 induces oncogenic effects remains unclear, with most studies demonstrating its regulation of the cell cycle and no insight into the maintenance of cellular stemness. For controlling certain critical pathways, including Shh and Wnt pathways, SOX2 is considered irreplaceable and is required for the normal functioning of stem cells, particularly neural stem cells. In this report, we discussed the functions of SOX2 in both stem and cancer cells, as well as how this powerful regulator can be used to control cell fate.


Subject(s)
SOXB1 Transcription Factors/metabolism , Stem Cell Transplantation/methods , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , SOXB1 Transcription Factors/genetics
9.
Molecules ; 24(22)2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31752262

ABSTRACT

Fibrosis is a type of chronic organ failure, resulting in the excessive secretion of extracellular matrix (ECM). ECM protects wound tissue from infection and additional injury, and is gradually degraded during wound healing. For some unknown reasons, myofibroblasts (the cells that secrete ECM) do not undergo apoptosis; this is associated with the continuous secretion of ECM and reduced ECM degradation even during de novo tissue formation. Thus, matrix metalloproteinases (MMPs) are considered to be a potential target of fibrosis treatment because they are the main groups of ECM-degrading enzymes. However, MMPs participate not only in ECM degradation but also in the development of various biological processes that show the potential to treat diseases such as stroke, cardiovascular diseases, and arthritis. Therefore, treatment involving the targeting of MMPs might impede typical functions. Here, we evaluated the links between these MMP functions and possible detrimental effects of fibrosis treatment, and also considered possible approaches for further applications.


Subject(s)
Fibrosis/etiology , Fibrosis/metabolism , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/pharmacology , Animals , Disease Susceptibility , Enzyme Activation , Extracellular Matrix/metabolism , Fibrosis/drug therapy , Gene Expression Regulation , Humans , Immunomodulation , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/therapeutic use , Myofibroblasts/metabolism , Neovascularization, Pathologic , Organ Specificity/genetics , Proteolysis , Wound Healing
10.
Int J Nanomedicine ; 14: 3601-3613, 2019.
Article in English | MEDLINE | ID: mdl-31190814

ABSTRACT

Introduction: Kolliphor® EL (K-EL) is among the most useful surfactants in the preparation of emulsions. However, it is associated with low hydrophobic drug loading in the resulting emulsified formulation. Methods: In this study, a formulation for intranasal administration of butylidenephthalide (Bdph), a candidate drug against glioblastoma (GBM), was prepared. Physical characteristics of the formulation such as particle size, zeta potential, conductivity, and viscosity were assessed, as well as its cytotoxicity and permeability, in order to optimize the formulation and improve its drug loading capacity. Results: The optimized formulation involved the integration of polyethylene glycol 400 (PEG 400) in K-EL to encapsulate Bdph dissolved in dimethyl sulfoxide (DMSO), and it exhibited higher drug loading capacity and drug solubility in water than the old formulation, which did not contain PEG 400. Incorporation of PEG 400 as a co-surfactant increased Bdph loading capacity to up to 50% (v/v), even in formulations using Kolliphor® HS 15 (K-HS15) as a surfactant, which is less compatible with Bdph than K-EL. The optimized Bdph formulation presented 5- and 2.5-fold higher permeability and cytotoxicity, respectively, in human GBM than stock Bdph. This could be attributed to the high drug loading capacity and the high polarity index due to DMSO, which increases the compatibility between the drug and the cell. Rats bearing a brain glioma treated with 160 mg/kg intranasal emulsified Bdph had a mean survival of 37 days, which is the same survival time achieved by treatment with 320 mg/kg stock Bdph. This implies that the optimized emulsified formulation required only half the Bdph dose to achieve an efficacy similar to that of stock Bdph in the treatment of animals with malignant brain tumor.


Subject(s)
Brain Neoplasms/drug therapy , Drug Delivery Systems , Emulsions/chemistry , Nanoparticles/chemistry , Nasal Mucosa/physiology , Polyethylene Glycols/chemistry , Animals , Brain Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Glioma/drug therapy , Glioma/pathology , Humans , Inhibitory Concentration 50 , Male , Nanoparticles/ultrastructure , Particle Size , Permeability , Phthalic Anhydrides/chemistry , Rats, Inbred F344 , Solubility , Surface-Active Agents/chemistry , Survival Analysis , Tumor Burden , Viscosity
11.
Cell Transplant ; 27(3): 407-422, 2018 03.
Article in English | MEDLINE | ID: mdl-29741115

ABSTRACT

Permanent deficits that occur in memory, sensation, and cognition can result from central nervous system (CNS) trauma that causes dysfunction and/or unregulated CNS regeneration. Some therapeutic approaches are preferentially applied to the human body. Therefore, cell transplantation, one of the therapeutic strategies, may be used to benefit people. However, poor cell viability and low efficacy are the limitations to cell transplantation strategies. Biomaterials have been widely used in several fields (e.g., triggering cell differentiation, guiding cell migration, improving wound healing, and increasing tissue regeneration) by modulating their characteristics in chemistry, topography, and softness/stiffness for highly flexible application. We reviewed implanted biomaterials to investigate the roles and influences of physical/chemical properties on cell behaviors and applications. With their unique molecular features, biomaterials are delivered in several methods and mixed with transplanted cells, which assists in increasing postimplanted biological substance efficiency on cell survival, host responses, and functional recovery of animal models. Moreover, tracking the routes of these transplanted cells using biomaterials as labeling agents is crucial for addressing their location, distribution, activity, and viability. Here, we provide comprehensive comments and up-to-date research of the application of biomaterials.


Subject(s)
Biocompatible Materials , Central Nervous System/cytology , Animals , Cell Movement/physiology , Cell Survival/physiology , Humans , Wound Healing/physiology
12.
J Mater Chem B ; 2(14): 1988-1997, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-32261635

ABSTRACT

The purpose of this study was to develop and evaluate thermally responsive copolymers, which contain temperature- and pH-sensitive segments that are either alternating in or grafted onto the main chain, and to exploit their temperature-sensitive properties for ophthalmic drug delivery. Accordingly, two types of thermoresponsive copolymers-a linear poly(acrylic acid-co-N-isopropylacrylamide) random copolymer (PAAc-co-PNIPAAm) and a poly(acrylic acid-g-N-isopropylacrylamide) graft copolymer (PAAc-g-PNIPAAm)-were investigated for their thermosensitive in situ gel formation and potential applications for ophthalmic drug delivery. All the PAAc-g-PNIPAAm graft copolymers, and the linear PAAc-co-PNIPAAm copolymer with low acrylic acid contents, have an LCST of 34 °C; this is close to the surface temperature of the eye and can therefore be utilized for ophthalmic drug delivery. In addition, the PAAc-g-PNIPAAm graft copolymers showed a higher water content than the linear random copolymer; this is due to the high water adsorption ability of PAAc. The drug release dynamics of [3H]-epinephrine as a model showed that the linear random copolymer has a faster drug release, while the graft copolymers showed a more sustained release profile. The Ritger-Peppas model was used to account for the release of the epinephrine diffusion exponent 'n' which was in between 0.5 and 0.6. The release of the drug is considered mainly dependent on diffusion but other factors cannot be excluded. We suspected that the dynamics of drug release are determined by the water adsorption ability because high water content results in the formation of a larger capillary network in the polymer matrix, which promotes drug diffusion into the copolymer. The results suggest that PAAc-g-PNIPAAm graft copolymers are potential thermosensitive in situ gel-forming materials for ophthalmic drug delivery.

13.
Biomaterials ; 34(30): 7328-34, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23827188

ABSTRACT

Hydrogels have been developed as artificial extracellular matrixes (ECMs) to mimic native tissue microenvironments for various applications. Unfortunately, poly(N-isopropylacrylamide) (PNIPAAM)-based hydrogels are not suitable for cell culturing and cell sheet preparation. Carbon nanotubes (CNTs), with their mechanical strength and electrical conductivity, have been considered as additives to increase the applicability of hydrogels to cell encapsulation and advance cardiac electrophysiological functions. A simple method for fabrication of PNIPAAM hydrogels interpenetrated with multiwalled CNTs (MWCNTs) as substrates for cell sheet preparation is reported. The results demonstrate that PNIPAAM hydrogels with interpenetrating MWCNTs still exhibit thermosensitive behavior. It is also found that epithelial Madin-Darby canine kidney (MDCK) cells can only attach and proliferate on MWCNT-interpenetrated PNIPAAM hydrogels. Furthermore, the PNIPAAM hydrogels with MWCNTs possess higher elastic moduli and hydrophobicities than those without MWCNTs, suggesting these two characteristics are necessary for the cells to attach to the hydrogel surfaces. Moreover, cell sheets can only be harvested from PNIPAAM hydrogels with MWCNTs because of their high ratio of cell attachment. Thus, this simple method provides sufficient mechanical strength to PNIPAAM hydrogels so that anchorage-dependent cells can be cultivated and provides a superior system for preparing cell sheets.


Subject(s)
Acrylic Resins/pharmacology , Cell Culture Techniques/methods , Hydrogels/pharmacology , Nanotubes, Carbon/chemistry , Tissue Engineering/methods , Animals , Cell Count , Cell Shape/drug effects , Cells, Cultured , Dogs , Elastic Modulus/drug effects , Hydrogels/chemical synthesis , Madin Darby Canine Kidney Cells , Materials Testing , Microscopy, Electron, Scanning , Nanotubes, Carbon/ultrastructure , Rheology/drug effects , Spectroscopy, Fourier Transform Infrared , Surface Properties/drug effects , Temperature
14.
Biomaterials ; 34(21): 4936-44, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23578561

ABSTRACT

The use of carbon nanotubes (CNTs) to promote neural differentiation is well known. However, most studies have focused on the effect of CNT-derived composites or CNT-based nanopattern substrates on differentiation. Whether or not the intrinsic properties of CNTs themselves can affect neural differentiation and the differentiation mechanism have not been fully investigated. We demonstrated that carboxylated multiwalled carbon nanotubes (MWCNTs) can induce and maintain neural differentiation of human bone marrow mesenchymal stem cells (hBMMSCs) without any exogenous differentiating factors, as evidenced by the protein expression. The low cytotoxicity of carboxylated MWCNTs was also shown by a proliferation assay. Quantitative real-time polymerase chain reaction (Q-PCR) data revealed that neural-associated genes, including growth and transcription factors, were promoted while bone-associated genes were inhibited when the cells were cultured on carboxylated MWCNTs. These up-regulated neural growth factors can also adsorb onto carboxylated MWCNTs. The data suggest that carboxylated MWCNTs play dual roles: promoting hBMMSC neural differentiation, including up-regulating the neural growth factors; and trapping these neural growth factors to create a suitable environment for long-term neural differentiation. Carboxylated MWCNT substrates may provide a method of post-transplantational spontaneous neural differentiation with low cytotoxicity for neuron injury repair.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/cytology , Nanotubes, Carbon/chemistry , Neurons/cytology , Adsorption , Animals , Cells, Cultured , Fluorescent Antibody Technique , Gene Expression Regulation , Humans , Intracellular Space/metabolism , Mesenchymal Stem Cells/metabolism , Nanotubes, Carbon/ultrastructure , Nerve Tissue Proteins/metabolism , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
15.
PLoS One ; 6(10): e24057, 2011.
Article in English | MEDLINE | ID: mdl-22022351

ABSTRACT

Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14), a reassortant virus between A/Vietnam/1194/2004 (H5N1) virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15) was generated and can grow over 10(8) TCID(50)/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.


Subject(s)
Adaptation, Biological/immunology , Influenza A Virus, H5N1 Subtype/growth & development , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/biosynthesis , Influenza, Human/epidemiology , Influenza, Human/immunology , Pandemics/prevention & control , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Chickens/virology , Chlorocebus aethiops , Disaster Planning , Dogs , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Molecular Sequence Data , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Vero Cells
16.
Vaccine ; 26(45): 5736-40, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18761387

ABSTRACT

Current egg-based influenza vaccine production technology, which is labor intensive and slow, would not be able to meet demand during an influenza pandemic. Thus, interest in the emerging technology of using mammalian cells for vaccine production has been great. In this study, Madin-Darby canine kidney (MDCK) cells using microcarrier culture systems were established to produce inactivated whole-virus H5N1 vaccine. The current clade-1 influenza H5N1 vaccine virus (NIBRG-14) was provided by the UK National Institute for Biological Standards and Control. Various process parameters were first optimized in 100-mL scale spinner flasks then scaled up to a 1-L scale bioreactor system. In the 1-L scale bioreactor system, peak virus titer could reach 10(8-9)TCID50/mL using serum-containing medium. After purification and inactivation, hemagglutinin (HA) protein content reached 31.56-43.96 microg/mL in two different runs. In mice immunogenicity studies, two doses of the purified vaccine antigen adjuvanted with aluminum phosphate induced good immune responses in 0.2 and 1.0 microg HA dosages (geometric mean titers of hemagglutination-inhibition antibody: 113 and 242, respectively). This study demonstrates the feasibility of the development of MDCK cell-based inactivated influenza H5 vaccines in microcarrier culture systems and could be valuable to many countries that are planning to establish manufacturing capacity for influenza vaccines.


Subject(s)
Cell Culture Techniques , Influenza A Virus, H5N1 Subtype/growth & development , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines , Virus Cultivation/methods , Animals , Antibodies, Viral/blood , Bioreactors , Biotechnology/instrumentation , Biotechnology/methods , Cell Count , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Line , Dogs , Female , Hemagglutination Inhibition Tests , Kidney , Mice , Mice, Inbred BALB C , Neutralization Tests , Vaccines, Inactivated
SELECTION OF CITATIONS
SEARCH DETAIL
...