Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 16: 188, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25879893

ABSTRACT

BACKGROUND: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. RESULTS: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. CONCLUSION: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.


Subject(s)
Adaptation, Physiological/genetics , Genome, Bacterial , Genomics , Homologous Recombination/genetics , Xanthomonas/genetics , Bacterial Proteins/genetics , Ecological and Environmental Phenomena , Genetic Variation , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA , Xanthomonas/classification
2.
PLoS One ; 9(5): e96841, 2014.
Article in English | MEDLINE | ID: mdl-24849202

ABSTRACT

Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states.


Subject(s)
DNA Copy Number Variations , Gene Dosage , Haplotypes , Markov Chains , Mouth Neoplasms/genetics , Software , Algorithms , Alleles , Chromosomes, Human , Cluster Analysis , Genome, Human , Humans , Mouth Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide
3.
Gene ; 511(2): 364-70, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23041083

ABSTRACT

Leptospirosis, a widespread zoonosis, is a re-emerging infectious disease caused by pathogenic Leptospira species. In Taiwan, Leptospira santarosai serovar Shermani is the most frequently isolated serovar, causing both renal and systemic infections. This study aimed to generate a L. santarosai serovar Shermani genome sequence and categorize its hypothetical genes, particularly those associated with virulence. The genome sequence consists of 3,936,333 nucleotides and 4033 predicted genes. Additionally, 2244 coding sequences could be placed into clusters of orthologous groups and the number of genes involving cell wall/membrane/envelope biogenesis and defense mechanisms was higher than that of other Leptospira spp. Comparative genetic analysis based on BLASTX data revealed that about 73% and 68.8% of all coding sequences have matches to pathogenic L. interrogans and L. borgpetersenii, respectively, and about 57.6% to saprophyte L. biflexa. Among the hypothetical proteins, 421 have a transmembrane region, 172 have a signal peptide and 17 possess a lipoprotein signature. According to PFAM prediction, 32 hypothetical proteins have properties of toxins and surface proteins mediated bacterial attachment, suggesting they may have roles associated with virulence. The availability of the genome sequence of L. santarosai serovar Shermani and the bioinformatics re-annotation of leptospiral hypothetical proteins will facilitate further functional genomic studies to elucidate the pathogenesis of leptospirosis and develop leptospiral vaccines.


Subject(s)
Genome, Bacterial , Leptospira/genetics , Virulence/genetics , Comparative Genomic Hybridization
4.
BMC Genomics ; 13 Suppl 7: S4, 2012.
Article in English | MEDLINE | ID: mdl-23282187

ABSTRACT

BACKGROUND: The opportunistic enterobacterium, Morganella morganii, which can cause bacteraemia, is the ninth most prevalent cause of clinical infections in patients at Changhua Christian Hospital, Taiwan. The KT strain of M. morganii was isolated during postoperative care of a cancer patient with a gallbladder stone who developed sepsis caused by bacteraemia. M. morganii is sometimes encountered in nosocomial settings and has been causally linked to catheter-associated bacteriuria, complex infections of the urinary and/or hepatobiliary tracts, wound infection, and septicaemia. M. morganii infection is associated with a high mortality rate, although most patients respond well to appropriate antibiotic therapy. To obtain insights into the genome biology of M. morganii and the mechanisms underlying its pathogenicity, we used Illumina technology to sequence the genome of the KT strain and compared its sequence with the genome sequences of related bacteria. RESULTS: The 3,826,919-bp sequence contained in 58 contigs has a GC content of 51.15% and includes 3,565 protein-coding sequences, 72 tRNA genes, and 10 rRNA genes. The pathogenicity-related genes encode determinants of drug resistance, fimbrial adhesins, an IgA protease, haemolysins, ureases, and insecticidal and apoptotic toxins as well as proteins found in flagellae, the iron acquisition system, a type-3 secretion system (T3SS), and several two-component systems. Comparison with 14 genome sequences from other members of Enterobacteriaceae revealed different degrees of similarity to several systems found in M. morganii. The most striking similarities were found in the IS4 family of transposases, insecticidal toxins, T3SS components, and proteins required for ethanolamine use (eut operon) and cobalamin (vitamin B12) biosynthesis. The eut operon and the gene cluster for cobalamin biosynthesis are not present in the other Proteeae genomes analysed. Moreover, organisation of the 19 genes of the eut operon differs from that found in the other non-Proteeae enterobacterial genomes. CONCLUSIONS: This is the first genome sequence of M. morganii, which is a clinically relevant pathogen. Comparative genome analysis revealed several pathogenicity-related genes and novel genes not found in the genomes of other members of Proteeae. Thus, the genome sequence of M. morganii provides important information concerning virulence and determinants of fitness in this pathogen.


Subject(s)
Genome, Bacterial , Morganella morganii/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Contig Mapping , Drug Resistance, Bacterial , Gram-Negative Bacterial Infections/microbiology , Humans , Morganella morganii/isolation & purification , Morganella morganii/pathogenicity , Proteus mirabilis/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...