Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 324(4): F335-F352, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36759130

ABSTRACT

Activation of NADPH oxidase (NOX) enzymes and the generation of reactive oxygen species and oxidative stress regulate vascular and renal function and contribute to the pathogenesis of hypertension. The present study examined the role of NOXA1/NOX1 function in vascular reactivity of renal and mesenteric resistance arteries/arterioles of wild-type and Noxa1-/- mice. A major finding was that renal blood flow is less sensitive to acute stimulation by angiotensin II (ANG II) in Noxa1-/- mice compared with wild-type mice, with a direct action on resistance arterioles independent of nitric oxide (NO) bioavailability. These functional results were reinforced by immunofluorescence evidence of NOXA1/NOX1 protein presence in renal arteries, afferent arterioles, and glomeruli as well as their upregulation by ANG II. In contrast, the renal vascular response to the thromboxane mimetic U46619 was effectively blunted by NO and was similar in both mouse genotypes and thus independent of NOXA1/NOX1 signaling. However, phenylephrine- and ANG II-induced contraction of isolated mesenteric arteries was less pronounced and buffering of vasoconstriction after acetylcholine and nitroprusside stimulation was reduced in Noxa1-/- mice, suggesting endothelial NO-dependent mechanisms. An involvement of NOXA1/NOX1/O2•- signaling in response to ANG II was demonstrated with the specific NOXA1/NOX1 assembly inhibitor C25 and the nonspecific NOX inhibitor diphenyleneiodonium chloride in cultured vascular smooth muscle cells and isolated mesenteric resistance arteries. Collectively, our data indicate that the NOX1/NOXA1/O2•- pathway contributes to acute vasoconstriction induced by ANG II in renal and mesenteric vascular beds and may contribute to ANG II-induced hypertension.NEW & NOTEWORTHY Renal reactivity to angiotensin II (ANG II) is mediated by superoxide signaling produced by NADPH oxidase (NOX)A1/NOX1. Acute vasoconstriction of renal arteries by ANG was blunted in Noxa1-/- compared with wild-type mice. NOXA1/NOX1/O2•- signaling was also observed in ANG II stimulation of vascular smooth muscle cells and isolated mesenteric resistance arteries, indicating that it contributes to ANG II-induced hypertension. A NOXA1/NOX1 assembly inhibitor (C25) has been characterized that inhibits superoxide production and ameliorates the effects of ANG II.


Subject(s)
Hypertension , Superoxides , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Kidney/metabolism , NADPH Oxidases/metabolism , Superoxides/metabolism
2.
Biochemistry ; 50(18): 3840-8, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21469660

ABSTRACT

Endothelium-derived epoxyeicosatrienoic acids (EETs) relax vascular smooth muscle by activating potassium channels and causing membrane hyperpolarization. Recent evidence suggests that EETs act via a membrane binding site or receptor. To further characterize this binding site or receptor, we synthesized 20-iodo-14,15-epoxyeicosa-8(Z)-enoyl-3-azidophenylsulfonamide (20-I-14,15-EE8ZE-APSA), an EET analogue with a photoactive azido group. 20-I-14,15-EE8ZE-APSA and 14,15-EET displaced 20-(125)I-14,15-epoxyeicosa-5(Z)-enoic acid binding to U937 cell membranes with K(i) values of 3.60 and 2.73 nM, respectively. The EET analogue relaxed preconstricted bovine coronary arteries with an ED(50) comparable to that of 14,15-EET. Using electrophoresis, 20-(125)I-14,15-EE8ZE-APSA labeled a single 47 kDa band in U937 cell membranes, smooth muscle and endothelial cells, and bovine coronary arteries. In U937 cell membranes, the 47 kDa radiolabeling was inhibited in a concentration-dependent manner by 8,9-EET, 11,12-EET, and 14,15-EET (IC(50) values of 444, 11.7, and 8.28 nM, respectively). The structurally unrelated EET ligands miconazole, MS-PPOH, and ketoconazole also inhibited the 47 kDa labeling. In contrast, radiolabeling was not inhibited by 8,9-dihydroxyeicosatrienoic acid, 5-oxoeicosatetraenoic acid, a biologically inactive thiirane analogue of 14,15-EET, the opioid antagonist naloxone, the thromboxane mimetic U46619, or the cannabinoid antagonist AM251. Radiolabeling was not detected in membranes from HEK293T cells expressing 79 orphan receptors. These studies indicate that vascular smooth muscle, endothelial cells, and U937 cell membranes contain a high-affinity EET binding protein that may represent an EET receptor. This EET photoaffinity labeling method with a high signal-to-noise ratio may lead to new insights into the expression and regulation of the EET receptor.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Azides/pharmacology , Fatty Acids, Unsaturated/pharmacology , Photoaffinity Labels/chemistry , Sulfonamides/chemistry , 8,11,14-Eicosatrienoic Acid/chemistry , Animals , Azides/chemistry , Binding Sites , Cattle , Cell Line , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Fatty Acids, Unsaturated/chemistry , Humans , Inhibitory Concentration 50 , Kinetics , Ligands , Protein Binding , U937 Cells
3.
J Pharmacol Exp Ther ; 331(3): 1137-45, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19762546

ABSTRACT

Epoxyeicosatrienoic acids (EETs) are endothelium-derived metabolites of arachidonic acid. They relax vascular smooth muscle by membrane hyperpolarization. These actions are inhibited by the EET antagonist, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EE5ZE). We synthesized 20-(125)iodo-14,15-EE5ZE (20-(125)I-14,15-EE5ZE), a radiolabeled EET antagonist, and characterized its binding to cell membranes. 14,15-EET (10(-9)-10(-5)M) caused a concentration-related relaxation of the preconstricted bovine coronary artery and phosphorylation of p38 in U937 cells that were inhibited by 20-(125)I-14,15-EE5ZE. Specific 20-(125)I-14,15-EE5ZE binding to U937 cell membranes reached equilibrium within 5 min and remained unchanged for 30 min. The binding was saturable and reversible, and it exhibited K(D) and B(max) values of 1.11 +/- 0.13 nM and 1.13 +/- 0.04 pmol/mg protein, respectively. Guanosine 5'-O-(3-thio)triphosphate (10 muM) did not change the binding, indicating antagonist binding of the ligand. Various EETs and EET analogs (10(-10)-10(-5)M) competed for 20-(125)I-14,15-EE5ZE binding with an order of potency of 11,12-EET = 14,15-EET > 8,9-EET = 14,15-EE5ZE > 15-hydroxyeicosatetraenoic acid = 14,15-dihydroxyeicosatrienoic acid. 8,9-Dihydroxyeicosatrienoic acid and 11-hydroxyeicosatetraenoic acid did not compete for binding. The soluble and microsomal epoxide hydrolase inhibitors (1-cyclohexyl-3-dodecyl-urea, elaidamide, and 12-hydroxyl-elaidamide) and cytochrome P450 inhibitors (sulfaphenazole and proadifen) did not compete for the binding. However, two cytochrome P450 inhibitors, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH) and miconazole competed for binding with K(i) of 1558 and 315 nM, respectively. Miconazole and MS-PPOH, but not proadifen, inhibited 14,15-EET-induced relaxations. These findings define an EET antagonist's binding site and support the presence of an EET receptor. The inhibition of binding by some cytochrome P450 inhibitors suggests an alternative mechanism of action for these drugs and could lead to new drug candidates that target the EET binding sites.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Cell Membrane/metabolism , Epoxy Compounds/pharmacology , 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors , 8,11,14-Eicosatrienoic Acid/chemical synthesis , 8,11,14-Eicosatrienoic Acid/chemistry , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Binding Sites , Blotting, Western , Cattle , Cell Membrane/drug effects , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Cytochrome P-450 Enzyme Inhibitors , Dose-Response Relationship, Drug , Epoxide Hydrolases/antagonists & inhibitors , Epoxy Compounds/chemical synthesis , Epoxy Compounds/chemistry , Humans , Iodine Radioisotopes , Ligands , Phosphorylation , U937 Cells , Vasodilation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Am J Physiol Lung Cell Mol Physiol ; 294(5): L902-11, 2008 May.
Article in English | MEDLINE | ID: mdl-18296498

ABSTRACT

Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47(phox) association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47(phox) and tyrosine phosphorylation of p47(phox) in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid.


Subject(s)
Endothelial Cells/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , NADPH Oxidases/metabolism , Pulmonary Artery/metabolism , Superoxides/metabolism , Animals , Cattle , Cells, Cultured , Dose-Response Relationship, Drug , Endothelial Cells/cytology , Endothelial Cells/drug effects , Hydrogen Peroxide/metabolism , Phosphorylation/drug effects , Pulmonary Artery/cytology , Pulmonary Artery/drug effects , Reactive Oxygen Species/metabolism , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , RAC2 GTP-Binding Protein
5.
Biochemistry ; 46(11): 3532-42, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17315983

ABSTRACT

The cocaine photoaffinity label 3-iodo-4-azidococaine ([125I]IACoc) binds to the sigma-1 receptor with an affinity that is 2-3 orders of magnitude higher than the parent compound cocaine [Kahoun, J. R., and Ruoho, A. E. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1393-1397]. In the present study, the binding properties of several cocaine derivatives to the guinea pig liver sigma-1 receptor were determined. The results from assessing the affinity of various derivatives of cocaine which were substituted on the phenyl ring indicated that an important determinant of binding to the guinea pig sigma-1 receptor binding site may be the development of a dipole in the ring in which the pi electron density of the phenyl ring is reduced. This implies that an electron-rich source is present in the sigma-1 receptor binding site, such as the pi system of an aromatic ring or other electron-rich side chains, which interact with the phenyl ring of cocaine. The precise [125I]IACoc derivatization site in the guinea pig sigma-1 receptor was identified using chemical cleavage and purification of the resulting labeled peptides. Cyanogen bromide cleavage of the [125I]IACoc photolabeled sigma-1 receptor followed by radiosequencing identified Asp188, which is located in the putative steroid binding domain-like II (SBDL II) near the carboxyl terminus, as the site of [125I]IACoc insertion. Systematic truncation of the C-terminus indicated the requirement for the last 15 amino acid residues of the receptor for [125I]IACoc photolabeling.


Subject(s)
Binding Sites , Cocaine/metabolism , Receptors, sigma/chemistry , Affinity Labels/metabolism , Amino Acid Sequence , Animals , Aspartic Acid/metabolism , Blotting, Western , COS Cells , Chlorocebus aethiops , Cocaine/analogs & derivatives , Guinea Pigs , Microsomes, Liver/metabolism , Molecular Sequence Data , Receptors, sigma/metabolism , Sequence Alignment , Sigma-1 Receptor
6.
Am J Physiol Lung Cell Mol Physiol ; 291(3): L378-85, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16679377

ABSTRACT

We have demonstrated that VEGF-induced dilation of bovine pulmonary arteries is associated with activation of cytochrome P-450 family 4 (CYP4) enzymes and eNOS. We hypothesized that VEGF and the CYP4 product 20-HETE would trigger common downstream pathways of intracellular signaling to activate eNOS. We treated bovine pulmonary artery endothelial cells (BPAECs) with 20-HETE (1 microM) or VEGF (8.3 nM) and examined three molecular events known to activate eNOS: 1) phosphorylation at serine 1179, 2) phosphorylation of protein kinase B (Akt), which subsequently phosphorylates eNOS, and 3) association of eNOS with 90-kDa heat shock protein (Hsp90). Both 20-HETE and VEGF increase the phosphorylation of eNOS at serine 1179 and Akt at serine 473. The CYP4 inhibitor dibromododecynyl methyl sulfonamide (DDMS) blocks VEGF-induced phosphorylation of eNOS. VEGF had no effect on the binding of Hsp90 with eNOS, whereas 20-HETE decreased the association of the protein partners. Inhibition of Akt-phosphatidylinositol 3-kinase with wortmannin blocks both 20-HETE and VEGF-induced relaxation of pulmonary arteries, supporting the functional contribution of Akt phosphorylation to the vasoactive actions of both agents. Treatment with radicicol had no effect on 20-HETE-induced relaxation of pulmonary arteries, consistent with an absence of effect on association of Hsp90 to eNOS, whereas radicicol partially blocked VEGF-evoked relaxations, possibly secondary to effects on endpoints other than Hsp90 association with eNOS. In conclusion, VEGF and 20-HETE share eNOS activation pathways, including phosphorylation of serine 1179 and phosphorylation of Akt. Unlike aortic endothelial cells, eNOS activation in BPAECs by either VEGF or 20-HETE does not appear to require increased association of Hsp90.


Subject(s)
Endothelium, Vascular/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Nitric Oxide Synthase Type III/metabolism , Pulmonary Artery/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Animals , Cattle , Cells, Cultured , Drug Synergism , Enzyme Activation , HSP90 Heat-Shock Proteins/metabolism , In Vitro Techniques , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/drug effects , Serine
SELECTION OF CITATIONS
SEARCH DETAIL
...