Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health Insights ; 17: 11786302231188269, 2023.
Article in English | MEDLINE | ID: mdl-37522029

ABSTRACT

Although it is well established that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be transmitted through aerosols, the mode of long-range aerosol transmission in high-rise buildings remains unclear. In this study, we analyzed an outbreak of coronavirus disease 2019 (COVID-19) that occurred in a high-rise building in China. Our objective was to investigate the plausibility of aerosol transmission of SARS-CoV-2 by testing relevant environmental variables and measuring the dispersion of a tracer gas in the drainage system of the building. The outbreak involved 7 infected families, of which 6 were from vertically aligned flats on different floors. Environmenìtal data revealed that 3 families' bathrooms were contaminated by SARS-CoV-2. In our tracer experiment, we injected tracer gas (CO2) into the dry floor drains and into water-filled toilets in the index case' s bathroom. Our findings showed that the gas could travel through vertical pipes by the dry floor drains, but not through the water of the toilets. This indicates that dry floor drains might facilitate the transmission of viral aerosols through the sewage system. On the basis of circumstantial evidence, long-range aerosol transmission may have contributed to the community outbreak of COVID-19 in this high-rise building. The vertical transmission of diseases through aerosols in high-rise buildings demands urgent attention.

3.
RSC Adv ; 10(8): 4251-4257, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-35495266

ABSTRACT

Long-term administration of chemotherapeutic agents often leads to multiple drug resistance (MDR), which greatly impairs the treatment outcome. To overcome this problem, a biodegradable nanocarrier based on an acid-sensitive calcium phosphate/silica dioxide (CAP/SiO2) composite was constructed for the codelivery of drug and siRNA. Anticancer drug doxorubicin (DOX) was encapsulated into the composite scaffold by interacting with the exposed Ca2+ of CAP/SiO2 to achieve high drug loading (180 µg mg-1). With further decoration of siRNA, the nanocarrier was applied to enhance the therapeutic efficacy by silencing MDR-relevant genes (P-gp) of DOX-resistance K562/ADR cancer cells. Benefiting from the intrinsic acid degradability of CAP/SiO2, the nanocomposite demonstrated pH-responsive release behavior, favoring drug/siRNA release within acidic endo-/lysosomes. Consequently, due to the drug and gene effects, this biodegradable nanomedicine demonstrated enhanced therapeutic efficiency, providing a novel strategy for cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...