Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(25): 6467-6475, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38869188

ABSTRACT

Photoexcitation induces intricate changes in both the real and imaginary components of the complex refractive index of thin film materials, which is essential for interpreting transient spectral features. Here, we employ a Kramers-Kronig-based analytical approach to elucidate light-induced changes in the complex refractive index from transient transmission spectra of thin films. Using gold-perovskite films as model systems, we conduct experimental measurements of transient transmission spectra for both individual gold and perovskite films, as well as for the bilayer heterostructure. Our analysis reveals significant changes in the refractive index and absorption for these systems. Notably, we observe negligible photocarrier transfer between the gold and perovskite layers based on transient spectroscopic analysis. These findings have implications for the design and optimization of bilayer heterostructures in optoelectronic applications. This work highlights the importance of spectroscopic techniques in studying the photophysical properties of heterostructure films.

2.
Photoacoustics ; 31: 100494, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37131996

ABSTRACT

Membrane viscosity is an important property of cell biology, which determines cellular function, development and disease progression. Various experimental and computational methods have been developed to investigate the mechanics of cells. However, there have been no experimental measurements of the membrane viscosity at high-frequencies in live cells. High frequency measurements are important because they can probe viscoelastic effects. Here, we investigate the membrane viscosity at gigahertz-frequencies through the damping of the acoustic vibrations of gold nanoplates. The experiments are modeled using a continuum mechanics theory which reveals that the membranes display viscoelasticity, with an estimated relaxation time of ca. 5.7 + 2.4 / - 2.7 ps. We further demonstrate that membrane viscoelasticity can be used to differentiate a cancerous cell line (the human glioblastoma cells LN-18) from a normal cell line (the mouse brain microvascular endothelial cells bEnd.3). The viscosity of cancerous cells LN-18 is lower than that of healthy cells bEnd.3 by a factor of three. The results indicate promising applications of characterizing membrane viscoelasticity at gigahertz-frequency in cell diagnosis.

3.
Sensors (Basel) ; 22(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35271084

ABSTRACT

During its operation, a rotor system can be exposed to multiple faults, such as rub-impact, misalignment, cracks and unbalancing. When a crack fault occurs on the rotor shaft, the vibration response signals contain some nonlinear components that are considerably tougher to be extracted through some linear diagnosis methods. By combining the Nonlinear Output Frequency Response Functions weighted contribution rate (WNOFRFs) and Kullback-Leibler (KL) divergence, a novel fault diagnosis method of improved WNOFRFs is proposed. In this method, an index, improved optimal WNOFRFs (IOW), is defined to represent the nonlinearity of the faulty rotor system. This method has been tested through the finite element model of a cracked rotor system and then verified experimentally at the shaft crack detection test bench. The results from the simulation and experiment verified that the proposed method is applicable and effective for cracked rotor systems. The IOW indicator shows high sensitivity to crack faults and can comprehensively represent the nonlinear properties of the system. It can also quantitatively detect the crack fault, and the relationship between the values of IOW and the relative depth of the crack is approximately positively proportional. The proposed method can precisely and quantitatively diagnose crack faults in a rotor system.

SELECTION OF CITATIONS
SEARCH DETAIL
...