Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Dent Sci ; 19(2): 1105-1115, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618091

ABSTRACT

Background/purpose: Nowadays, zirconia-based framework has been used for longspan or full-arch fixed dental prostheses (FDPs). This study aimed to evaluate the effect of pontic distribution on marginal and internal gaps of five-unit anterior zirconiabased DPs. Materials and methods: Right maxillary central incisor and second premolar were selected as terminal abutments and three different edentulous conditions with one nonterminal abutment were simulated. Marginal and internal gaps in each zirconia-based samples(n = 10) were examined by computer-aided replica technique. Five regions, including marginal gaps at mesial or distal finishing line, internal gaps at the mesial or distal axial wall, and occlusal surface, were statistically analyzed (α = .05). Results: Most of marginal gaps and internal gaps at axial wall were clinically acceptable, but larger at occlusal surface. For the three experimental groups, clinically accepted percentage with qualified gaps were less than 30%.There were statistical differences at axial wall over pontic side and marginal gaps over non-pontic side between groups (P<0.05). For sum of gaps of all abutments in each group, statistical differences were found at marginal and axial wall (P < 0.05). As for those on terminal and non-terminal abutments, statistical differences were found on second premolar (P < 0.05). Conclusion: Except for occlusal surface, the overall marginal gaps and internal gaps at axial wall of five-unit anterior zirconia-based FDPs with different pontic distribution were clinically acceptable. However, the percentage with qualified gaps were low (<30%). Greater gaps were noted when adjacent pontic existed. Different pontic size and distribution with curvature had an influence on the gaps.

2.
J Prosthet Dent ; 130(4): 646-653, 2023 Oct.
Article in English | MEDLINE | ID: mdl-34920871

ABSTRACT

STATEMENT OF PROBLEM: The properties of commercially pure titanium are better than those of cobalt chromium alloys in various ways. However, casting pure titanium is challenging because of its high melting point and chemical reactivity. Because of excellent mechanical strength, a titanium alloy, Ti-6Al-4V, has been commonly adopted, but the aluminum and vanadium ions released may be cytotoxic. PURPOSE: The purpose of the present study was to evaluate a new titanium alloy, Ti-7.5Mo, developed by the National Cheng Kung University for casting removable denture frameworks. The casting success rate, porosity, and guide plane or rest fit were compared among frameworks cast with Ti-7.5Mo alloy and pure titanium for 3 types of edentulism. MATERIAL AND METHODS: Ti-7.5Mo alloy and pure titanium were used to cast frameworks for Kennedy Class I and II and completely edentulous conditions, with 5 frameworks for each condition. Wax patterns of the frameworks were designed and fabricated by using computer-aided design and computer-aided manufacture (CAD-CAM) technology to ensure their geometrical consistency. They were then invested with aluminum oxide-based material and cast. The castings were examined with microcomputed tomography (µCT) for porosity, and fit was evaluated from the thickness of a vinyl polyether silicone material at the guide plane or the rest by using an optical microscope. The casting was determined to be successful if the frameworks were complete. The porosity and fit were statistically evaluated by using 2-way ANOVA (α=.05). RESULTS: Using pure titanium, the casting success rate was 80%, with only 64% of the major connectors in the deficient castings being complete. The µCT images showed that the percentage of casting defects in Ti-7.5Mo castings was one-third of the pure titanium castings. Furthermore, internal voids were detected in the clasps of the pure titanium castings, while the Ti-7.5Mo castings had few defects in the minor connectors and no radiographically detectable defects in the clasps. The fit analysis demonstrated smaller gaps over both guide planes and rests in the Ti-7.5Mo castings. CONCLUSIONS: Ti-7.5Mo alloy had better castability than pure titanium. Based on the results, Ti-7.5Mo alloy is suitable for dental casting and may provide better performance.

3.
J Prosthet Dent ; 129(1): 181-190, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34023142

ABSTRACT

STATEMENT OF PROBLEM: The cantilevered resin-bonded fixed dental prosthesis (RBFDP) is a feasible and minimally invasive treatment option to restore a single missing tooth, especially when the missing tooth space is small (<7 mm) and cost-effectiveness is essential. However, its long-term survival needs to be improved by increasing its structural strength and interfacial adhesion. PURPOSE: The purpose of this study was to improve the interfacial bonding and to enhance the structural strength of a 2-unit inlay-retained cantilevered RBFDP with a 2-step numerical shape optimization. MATERIAL AND METHODS: A finite element model of a mandibular first molar with a second premolar pontic was constructed. A load of 200 N simulating the average occlusal force was applied on the mesial fossa of the pontic. In the first step, an in-house user-defined material subroutine was used to generate the cavity preparation. The subroutine iteratively changed the tooth tissues next to the pontic to composite resin according to the local stresses until convergence was achieved. In the second step, the subroutine was used to optimize the placement of fibers in the pontic by placing fibers in high-stress regions. To assess the debonding resistance and load capacity of the optimized and conventional designs, further analyses were conducted to compare their stresses at the tooth-restoration interface and those within the restoration. RESULTS: Shape optimization resulted in a shovel-shaped cavity preparation and a pontic with fibers placed near the occlusal surface of the connector region. With the optimized cavity preparation only, the maximum principal stress within the restoration and the tooth structure was reduced from 639.4 MPa to 525.4 MPa and from 381.7 MPa to 352.8 MPa, respectively. With the embedded fibers, the shovel-shaped cavity preparation reduced the maximum interfacial tensile stress by approximately 70% (conventional: 189.6 MPa versus optimized: 57.0 MPa) and the peak maximum principal stress of the veneering composite resin by 45% (conventional: 638.8 MPa versus optimized: 356.5 MPa). The peak maximum principal stress was also reduced for the remaining tooth structure by approximately 30% (conventional: 372.2 MPa versus optimized: 253.1 MPa). CONCLUSIONS: Shape optimization determined that a shovel-shaped retainer with fibers placed near the occlusal surface of the connector area can collectively reduce the interfacial and structural stresses of the 2-unit cantilevered fiber-reinforced RBFDP. This may offer a more conservative treatment option for replacing a single missing tooth.


Subject(s)
Dental Bonding , Composite Resins/chemistry , Inlays , Denture, Partial, Fixed , Finite Element Analysis , Dental Stress Analysis/methods , Stress, Mechanical
4.
J Prosthet Dent ; 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36528390

ABSTRACT

STATEMENT OF PROBLEM: Current designs of fiber-reinforced composite (FRC) resin-bonded fixed dental prostheses (RBFDPs) have a limited lifespan, failing mainly through veneer-fiber delamination, debonding, and fracture. PURPOSE: The purpose of this in vitro study was to validate a new inlay-retained 2-unit cantilevered RBFDP with an optimized cavity and fiber layout proposed in a previous study by using simulated occlusal loading. MATERIAL AND METHODS: Two groups of specimens (n=20), 1 with and 1 without glass fibers, were used to test the influence of the cavity design and that of the fiber layout on their load capacity, respectively. The specimens without fibers were directly cut from a resin-ceramic block by using a computer-aided manufacturing system, while those with fibers were manually fabricated with unidirectional glass fibers and composite resin in a silicone mold. The specimens with and without fibers were attached to abutments made of the same resin-ceramic with a cyanoacrylate-based adhesive and a resin-based dental cement, respectively. An increasing compressive load was applied on the mesial fossa of the premolar pontic until failure. Cracking in the specimens during loading was monitored with a 2-channel acoustic emission (AE) system. RESULTS: All the specimens without fiber reinforcement debonded from the abutments. Those using the optimized shovel-shaped cavity design had a mean ±standard deviation failure load (50.0 ±17.3 N) that was 193% higher than that of those with the conventional step-box design (17.1 ±6.2 N; P<.001). No significant difference was found between the groups for the mean number of AE events per specimen (step-box: 49 ±34 versus shovel-shaped: 63 ±34; P=.427), the mean amplitude of each event (58.4 ±1.3 dB versus 59.5 ±2.4 dB; P=.299), or the mean time to failure (283.2 ±122.3 seconds versus 297.5 ±66.7 seconds; P=.798). Between the groups of specimens with reinforcing fibers, the mean failure load of the conventional design was approximately half that of the optimized one. Again, no significant difference was found for the mean number of AE events per specimen (conventional: 28 ±18 versus optimized: 52 ±53; P=.248) or the mean amplitude for each AE event (64.9 ±4.2 dB versus 61.7 ±5.2 dB; P=.187). The connectors of 8 fiber-reinforced specimens with the conventional design fractured; the other 2 debonded from the abutments. Half of the shape-optimized fiber-reinforced specimens had fractured abutments, but the cantilevers remained intact, 4 specimens fractured at the connector, and only 1 debonded from its abutment. CONCLUSIONS: The shape-optimized 2-unit cantilevered FRC RBFDP had a higher load capacity than the conventional design.

5.
Polymers (Basel) ; 14(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501655

ABSTRACT

In order to discuss the polymerization effect from the substituted position and methoxy group of Type I photinitiators, a series of naphthalene-based oxime esters was designed and synthesized. Compared to the 2-naphthalene-substituted compound, the UV absorption region of the 1-naphthalene-based compound was greatly improved. In addition, the methoxy substitution exhibited longer absorption characteristics than did the methoxy-free one. The photochemical reaction behavior of these novel compounds was also studied by photolysis, cyclic voltammetry (CV), and electron spin resonance (ESR) experiments. Finally, the initiation abilities of naphthalene-based oxime esters toward trimethylolpropane triacrylate (TMPTA) monomer were conducted through the photo-DSC instrument under UV and a 405@nm LED lamp. Remarkedly, the naphthalene-based oxime ester (NA-3) that contains 1-naphthalene with o-methoxy substituent showed the rather red-shifted absorption region with the highest final conversion efficiency under UV (46%) and 405@nm LED (41%) lamp irradiation.

6.
J Dent Sci ; 17(4): 1689-1696, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36299309

ABSTRACT

Background/purpose: Self-etching bonding systems are widely used in fiber post cementation. However, no clear guidelines are established for choosing pre- or co-curing procedures. We investigated the bond strength of fiber post cementation using pre-/co-curing methods in self-etching bonding systems and compared them with those of a self-adhesive system. Materials and methods: Post spaces were prepared in 30 single-rooted premolars/canines, and the fiber posts were cemented in three ways (10 specimens per group): using a self-etching bonding system with either a pre-curing or simultaneous co-curing procedure (RelyX™ Ultimate; groups SE-pre and SE-co, respectively) and using a self-adhesive system (RelyX™ Unicem 2, group SA). Each specimen was embedded and sliced perpendicularly to the long axis into three 2.5-mm-thick sections. Microphotographs of the coronal and apical surfaces of each section were acquired, and push-out tests (1 mm/min) were performed. One-way analysis of variance was conducted on the data, followed by Tukey's honestly significant difference post hoc test. Results: The bond strength in the whole root was not significantly different among the three groups. When independently evaluating each portion, group SE-co exhibited significantly lower coronal bond strength. The bond strength varied among root regions only in group SE-pre; the apical region had a significantly lower value. Conclusion: No cementation method is superior in all portions. Regarding pre-curing methods, clinicians must caution the fit between the post and post space, which may be affected by the pre-polymerized bond layer. The co-curing method used in a larger coronal cement space contributes to the poor bond strength.

7.
Article in English | MEDLINE | ID: mdl-35270714

ABSTRACT

CAD/CAM technologies have been embedded into the fabrication of removable partial denture (RPD). Various materials such as zirconia and polyetheretherketone (PEEK) are developed for subtractive manufacturing. As for additive manufacturing, dental professionals have begun to use selective laser melting (SLM) techniques for fabricating metallic RPD frameworks. This report demonstrates a case rehabilitated with a maxillary telescopic crown-retained combining PEEK and zirconia material denture and a mandibular Kennedy Class I RPD fabricated with SLM techniques. First, a conventional impression was performed and the master cast was mounted with a centric relation record. Digital models were obtained using tabletop scanners and then the telescopic primary zirconia crowns were designed and milled. After transferring the intraoral distribution of primary crowns using pick-up impression, secondary PEEK crowns and framework were designed, milled, and veneered with composite resin. Mandibular framework was designed and constructed using SLM technique with Ti-6Al-4V. Definitive prostheses for both jaws were finished and delivered. Delivered prostheses functioned well for a one-year period. The was patient satisfied with the improvements in chewing function and esthetics. Both substrative and additive manufacturing techniques are suitable for framework fabrication. Further investigation is needed for improving the mechanical performance and long-term prognosis of digitally made prostheses.


Subject(s)
Denture, Partial, Removable , Mouth Rehabilitation , Alloys , Benzophenones , Computer-Aided Design , Humans , Ketones , Lasers , Polyethylene Glycols , Polymers , Titanium , Zirconium
8.
Dent Mater ; 38(4): 715-724, 2022 04.
Article in English | MEDLINE | ID: mdl-35249744

ABSTRACT

OBJECTIVE: To investigate the effect of silane contents on their chemical interaction with 10-methacryloyloxydecyl-dihydrogen phosphate (MDP), and affecting the bonding of MDP to zirconia by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and solid-state nuclear magnetic resonance (SSNMR) spectroscopy. METHODS: Zirconia (Cercon ht, Dentsply) slabs were prepared and fully sintered. Experimental primers SE-5 and SE-10 were formulated by adding 5 wt% and 10 wt% γ-methacryloxypropyltrimethoxysilane to an MDP-based primer SE BOND (SE), respectively. SE, SE-5, and SE-10 were applied on the assigned zirconia slabs. The chemical compositions on the surface and adhesive interfaces were examined by TOF-SIMS in a depth-profiling mode. Hydrophilicity and resin affinity of treated zirconia were analyzed. The bond strengths to resin cylinder were examined either after 24-h storage or thermocycles. In addition, zirconia powders treated with three primers were assessed by SSNMR spectrometry for the adsorption of MDP. RESULTS: TOF-SIMS analysis showed that SE treatment generated the greatest amount of P-O-Zr related ions, which reduced in SE-5 and SE-10 groups. The 3D ion-images illustrated the generation of ZrO2(OH)- ions with silane contents. The SSNMR analysis revealed that the chemical bonding was mainly P-O-Zr ionic bonds in SE but shifted to P-OH-Zr hydrogen bonds in SE-5 and SE-10. SE-5 and SE-10 treated zirconia presented higher hydrophilicity and affinity to resin compared to Zr did. SE showed the highest initial bond strength which significantly decreased after thermocycling. SIGNIFICANCE: MDP adsorption onto zirconia via P-O-Zr ionic bond promotes bonding with resin. The silane enhances the hydroxylation of zirconia and impairs the adsorption of MDP, but does not adversely affect the bond durability.


Subject(s)
Dental Bonding , Silanes , Materials Testing , Methacrylates/chemistry , Resin Cements , Shear Strength , Surface Properties , Zirconium/chemistry
9.
Biomed Res Int ; 2022: 9880454, 2022.
Article in English | MEDLINE | ID: mdl-35342763

ABSTRACT

Segmental bony defects of the mandible constitute a complete loss of the regional part of the mandible. Although several types of customized three-dimension-printed mandible prostheses (CMPs) have been developed, this technique has yet to be widely used. We used CMP with a pressure-reducing device (PRD) to investigate its clinical applicability. First, we used the finite element analysis (FEA). We designed four models of CMP (P1 to P4), and the result showed that CMP with posterior PRD deployment (P4 group) had the maximum total deformation in the protrusion and right excursion positions, and in clenching and left excursion positions, posterior screws had the minimum von Mises stress. Second, the P4 CMP-PRD was produced using LaserCUSING from titanium alloy (Ti-6Al-4V). The fracture test result revealed that the maximum static pressure that could be withstood was 189 N, and a fatigue test was conducted for 5,000,000 cycles. Third, animal study was conducted on five male 4-month-old Lanyu pigs. Four animals completed the experiment. Two animals had CMP exposure in the oral cavity, but there was no significant inflammation, and one animal had a rear wing fracture. According to a CT scan, the lingual cortex of the mandible crawled along the CMP surface, and a bony front-to-back connection was noted in one animal. A histological examination indicated that CMP was significantly less reactive than control materials (p = 0.0170). Adequate PRD deployment in CMP may solve a challenge associated with CMP, thus promoting its use in clinical practice.


Subject(s)
Mandible , Mastication , Animals , Male , Biomechanical Phenomena , Finite Element Analysis , Mandible/diagnostic imaging , Mandible/surgery , Mandibular Prosthesis , Printing, Three-Dimensional , Stress, Mechanical , Swine
10.
Photochem Photobiol ; 98(4): 773-782, 2022 07.
Article in English | MEDLINE | ID: mdl-34674274

ABSTRACT

In this work, free radical photopolymerization (FRP) kinetics for series of different phenylamine oxime ester structures (DMA-P, DEA-P, DMA-M, TP-2P, TP-2M and TP-3M) was investigated. Steric hindrance and branched substituents were prepared to realize the corresponding electronic and photopolymerization effects. The photophysical, electrochemical, thermal properties and radical concentration were investigated by UV-visible spectroscopy, cyclic voltammetry (CV), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR). Furthermore, the structure-reactivity relationships were also studied in detail through photo-DSC experiment. We demonstrate that the introduction of alkyl chains and/or numbers of oxime esters affects significantly the photoreactivity. Under the same weight ratio of formulation and irradiated condition, TP-3M containing three oxime esters in its structure and methyl group in the periphery exhibits the highest double-bond conversion efficiency. TP-3M-based formulation also shows a wide operation window under different contents and light intensities. Importantly, the photoreactivity of the TP-3M-based system was found to be better than the commercial photoinitiator (OXE-01) under LED@405 nm at a low concentration. This work could provide some significance to the design of oxime esters with enhanced photoreactivity.


Subject(s)
Esters , Oximes , Aniline Compounds , Calorimetry, Differential Scanning , Light , Oximes/chemistry
11.
Polymers (Basel) ; 13(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072579

ABSTRACT

Three novel visible-light absorbing benzophenone-based hydrogen acceptors (BPD-D, BPDM-D and BPDP-D) were designed on the basis of a donor-benzophenone-donor structural backbone. Mono or diketone units and double diphenylamine electron-donating groups in para-or meta-positions were introduced to comprehend the electronic and structural effects on free radical photopolymerization (FRPP). Such a structural change leads not only to a red-shift of the absorption maxima but strongly enhances their molar extinction coefficients compared to the commercial phototinitiators such as benzophenone (BP) and 4,4'-bis(diethylamino) benzophenone (EMK). In addition, excellent melting points and thermal decomposition temperatures were achieved for those novel compounds. Further, the photochemical reaction behavior was studied by cyclic voltammograms (CV), photolysis and electron spin resonance (ESR) spectroscopy. Finally, benzophenone derivatives in combination with an amine (TEA, triethylamine) as a co-initiator were prepared and initiated the FRPP of trimethylolpropane trimethacrylate (TMPTMA) using a UV lamp as a light source. When used in stoichiometric amounts, the BPDP-D/TEA had the best double bond conversion efficiency among all the compounds studied, and were even superior to the reference compounds of BP/TEA and EMK/TEA. The results and conclusions could provide the fundamental rules applicable for the structural design of benzophenone derivative-based photoinitiators.

12.
BMC Oral Health ; 21(1): 264, 2021 05 16.
Article in English | MEDLINE | ID: mdl-33993877

ABSTRACT

BACKGROUND: This study evaluates the mechanical performance of deep margin elevation technique for carious cavities by considering the shape designs and material selections of inlay using a computational approach combined with the design of experiments method. The goal is to understand the effects of the design parameters on the deep margin elevation technique and provide design guidelines from the biomechanics perspective. METHODS: Seven geometric design parameters for defining an inlay's shape of a premolar were specified, and the influence of cavity shape and material selection on the overall stress distribution was investigated via automated modelling. Material selection included composite resin, ceramic, and lithium disilicate. Finite element analysis was performed to evaluate the mechanical behavior of the tooth and inlay under a compressive load. Next, the analysis of variance was conducted to identify the parameters with a significant effect on the stress occurred in the materials. Finally, the response surface method was used to analyze the stress responses of the restored tooth with different design parameters. RESULTS: The restored tooth with a larger isthmus width demonstrated superior mechanical performance in all three types of inlay materials, while the influence of other design parameters varied with the inlay material selection. The height of the deep margin elevation layer insignificantly affected the mechanical performance of the restored tooth. CONCLUSIONS: A proper geometric design of inlay enhances the mechanical performance of the restored tooth and could require less volume of the natural dentin to be excavated. Furthermore, under the loading conditions evaluated in this study, the deep margin elevation layer did not extensively affect the strength of the tooth structure.


Subject(s)
Dental Caries , Inlays , Ceramics , Composite Resins , Dental Stress Analysis , Finite Element Analysis , Humans , Materials Testing , Stress, Mechanical
13.
J Dent Sci ; 14(3): 309-317, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31528260

ABSTRACT

BACKGROUND/PURPOSE: Clinically, PMMA resin is extensively used for fabricating provisional FPDs. However, fracture often occurs due to the unsatisfactory mechanical strength, especially within connectors of long-span provisional FPDs. The purpose of this study is to evaluate the fracture load of fiber-reinforced provisional FPDs with various pontic span lengths, and to identify the most suitable span length for fiber-reinforced long-span provisional FPDs. MATERIALS AND METHODS: Fifty-six provisional FPDs with various pontic span lengths were fabricated. Seven samples from each group were reinforced with glass fibers. Unreinforced counterparts served as control. The samples were fixed on the abutments after thermocycling and then received a fatigue test. Subsequently, they were mechanically loaded until fracture, and the initial fracture load and fracture patterns were recorded. Statistical analysis, including two-sample t-test, one-way, two-way ANOVA, Tukey-Kramer HSD post hoc analysis and χ2 test were used to evaluate mechanical performance. RESULTS: The mean fracture load of FPDs with 14 mm pontic span length is significantly higher than the other lengths. The fracture load of each reinforced group is significantly higher than each counterpart control. There is no interaction between two variables, pontic span and fiber reinforcement. With fiber reinforcement, the fracture patterns were altered from catastrophic fracture to bent or partial fracture. But, the fracture patterns were not affected by pontic span. CONCLUSION: The fracture load of acrylic FPDs decreases significantly when pontic span length is greater than 17 mm. Adding glass fibers into long-span provisional FPDs can significantly improve the fracture resistance and fracture patterns.

14.
Comput Math Methods Med ; 2019: 7416076, 2019.
Article in English | MEDLINE | ID: mdl-31379973

ABSTRACT

In some cases of proclined maxillary incisors, the proclination can be corrected by a fixed prosthesis. The aim of this study was to investigate the magnitude and distribution of (i) principal stresses in the adjacent alveolar bone and (ii) direct and shear stresses that are normal and parallel, respectively, to the bone-tooth interface of a normal angulated maxillary incisor, a proclined one, and a proclined one corrected with an angled prosthetic crown. 2D finite-element models were constructed, and a static load of 200 N on the palatal surface of the maxillary incisor at different load angles was applied. Load angles (complementary angle to interincisal angle) ranging from 20° to 90° were applied. The results indicate that the load angle could have a more significant impact on the overall stress distributions in the surrounding alveolar bone and along the bone-tooth interface than the proclination of the maxillary incisor. Provided that the resulting interincisal angle is 150° or smaller, the stresses in the surrounding bone and at the bone-tooth interface are similar between a proclined maxillary incisor and the one with prosthodontic correction. Hence, such a correction, when deemed appropriate clinically, can be undertaken with confidence that there is little risk of incurring additional stresses over that already in existence, in the supporting bone and at the tooth-bone interface.


Subject(s)
Dental Prosthesis Design , Dental Prosthesis/instrumentation , Incisor/anatomy & histology , Maxilla/anatomy & histology , Algorithms , Biomechanical Phenomena , Cephalometry , Computer Simulation , Elasticity , Finite Element Analysis , Humans , Incisor/surgery , Linear Models , Materials Testing , Maxilla/surgery , Pressure , Software , Stress, Mechanical , Tensile Strength
15.
Photochem Photobiol Sci ; 18(1): 190-197, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30411096

ABSTRACT

A series of p-substituted NPG derivatives (Cl-NPG, OMe-NPG and NO2-NPG) comprising different push-pull characteristics have been synthesized and characterized. The NPG derivatives have good thermal stability and red shifted absorption when compared with the original N-phenyl glycine (NPG) compound. These NPGs were selected in combination with 2-chlorohexaaryl biimidazole (o-Cl-HABI) for Type II free radical polymerization (FRP). Commercial NPG was also mixed with o-Cl-HABI for comparison. Their photo-polymerization properties were investigated by the gel fraction method in a nitrogen atmosphere. Electron transfer efficiencies for those Type II packages were studied by cyclic voltammetry (CV) and free energy change ΔG results.

16.
Dent Mater ; 34(8): 1188-1198, 2018 08.
Article in English | MEDLINE | ID: mdl-29784462

ABSTRACT

OBJECTIVES: To evaluate the effects of different atmospheric-pressure plasma (APP) on the physicochemical properties of yttria-stabilized zirconia, and promoting the adhesion of veneering porcelain. METHODS: Cercon base zirconia disks were prepared to receive different treatments: as-polished, three APPs (oxygen, OP; argon, AP; and CF4, CP), and grit-blasted (GB). Their surface roughness and hydrophilicity were measured, and surface morphology was examined either after treatments, after simulated porcelain firing, or additional thermal etching. X-ray photoelectron spectroscopy (XPS) analysis characterized the surface chemical compositions. Shear bond strength (SBS) tests examined the adhesion between veneering porcelain and zirconia either before or after thermocycling. The layered ceramic disks were also sectioned to inspect the porcelain-zirconia interfaces. Statistical analysis was performed with one-way ANOVA and post hoc Duncan's test. RESULTS: Grit-blasting caused surface damage and increased roughness. All APP-treated disks exhibited deeper grain boundaries and enlarged grain sizes after thermal etching, while CP disks revealed additional particle dispersions. Three APPs rendered the zirconia surface superhydrophilic. XPS spectra of three APP groups revealed increased hydroxyl groups and reduced C-C contents, and CP group especially showed the existence of Z-F bonds. CP exhibited the highest SBS both before and after thermocycling, while AP and GB also showed improved SBSs compared to the as-polished. OP presented reduced SBS, and its cross-sections showed increased microporosities in the veneering porcelain. SIGNIFICANCE: APP did not change surface morphology but enhanced wettability. CP and AP improved porcelain-zirconia SBSs, primarily through surface hydroxylation. OP induced the microporosities in porcelain and adversely affected the adhesion.


Subject(s)
Argon/chemistry , Dental Bonding , Dental Porcelain/chemistry , Fluorocarbons/chemistry , Oxygen/chemistry , Plasma Gases/chemistry , Yttrium/chemistry , Zirconium/chemistry , Atmospheric Pressure , Photoelectron Spectroscopy , Porosity , Shear Strength , Surface Properties , Wettability
17.
Dent Mater ; 34(8): e197-e204, 2018 08.
Article in English | MEDLINE | ID: mdl-29739624

ABSTRACT

OBJECTIVE: This study aimed to evaluate the fracture load and pattern of customized and non-customized zirconia abutments with Morse-taper connection. METHODS: 18 implants were divided into 3 groups according to the abutments used: Zr - with non-customized zirconia abutments; Zrc - with customized zirconia abutments; and Ti - with titanium abutments. To test their load capacity, a universal test machine with a 500-kgf load cell and a 0.5-mm/min speed were used. After, one implant-abutment assembly from each group was analyzed by Scanning Electron Microscopy (SEM). For fractographic analysis, the specimens were transversely sectioned above the threads of the abutment screw in order to examine their fracture surfaces using SEM. RESULTS: A significant difference was noted between the groups (Zr=573.7±11.66N, Zrc=768.0±8.72N and Ti=659.1±7.70N). Also, the zirconia abutments fractured while the titanium abutments deformed plastically. Zrc presented fracture loads significantly higher than Zr (p=0.009). All the zirconia abutments fractured below the implant platform, starting from the area of contact between the abutment and implant and propagating to the internal surface of the abutment. All the zirconia abutments presented complete cleavage in the mechanical test. Fractography detected differences in the position and pattern of fracture between the two groups with zirconia abutments, probably because of the different diameters in the transmucosal region. SIGNIFICANCE: Customization of zirconia abutments did not affect their fracture loads, which were comparable to that of titanium and much higher than the maximum physiological limit for the anterior region of the maxilla.


Subject(s)
Dental Implant-Abutment Design , Dental Restoration Failure , Zirconium/chemistry , Dental Materials/chemistry , Dental Stress Analysis , Materials Testing , Microscopy, Electron, Scanning , Stress, Mechanical , Titanium/chemistry
18.
Sci Rep ; 8(1): 2350, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29403067

ABSTRACT

The push-out (PO) test and the diametral compression (DC) test were performed to compare the merits of two post-dentin bond strength measurement methods. Compared with the push-out test, the disk in DC provided post-dentin bond strength measurements that were more precise. The load-displacement curves from the DC test were much smoother and more linear up to the point of fracture when compared to those from the PO test. Compared to the PO test, DC is easier to perform for determining the bond strength between posts and dentin. No specimen alignment is needed in the DC test, and it produces a smaller standard deviation in the measured bond strength. The main disadvantage of the DC test, however, is that finite element analysis (FEA) is required to calculate the bond strength. The shear bond strength given by the PO test based on the simple formula is not valid, though, and the peak failure load is dependent on friction at the post-dentin interface.


Subject(s)
Dental Bonding/methods , Dentin-Bonding Agents/chemistry , Dentin/chemistry , Materials Testing/methods , Animals , Cattle , Composite Resins/chemistry , Humans , Tensile Strength
19.
RSC Adv ; 8(18): 9783-9789, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-35540859

ABSTRACT

A series of phenothiazine based dyes (OMS1-3), comprising different conjugation lengths and numbers of electron deficient (cyanovinyl) moieties with cyanoacrylic acid as an anchor, have been synthesized. The dyes display broad UV-visible absorption, from 389 nm to 484 nm. The higher molar extinction coefficient and longer absorption peak are achieved as the conjugation length and numbers of electron deficient units increase. The cell performance based on these dyes exhibits efficiencies ranging from 0.68-4.00%, compared to a standard N719-based device (PCE = 7.49%) fabricated under similar conditions. Although the OMS3 dye has two electron deficient units between phenothiazine units, an insignificant electron trapping effect is observed. From the results, the OMS3 based cell exhibits the highest short circuit current (J SC) at 8.72 mA cm-2 and the highest open-circuit voltage (V OC) at 0.66 V, together with the best cell performance at 4.00%.

20.
Dent Mater ; 33(11): 1315-1323, 2017 11.
Article in English | MEDLINE | ID: mdl-28890234

ABSTRACT

OBJECTIVE: To verify and calibrate a chemical model for simulating the degradation of the dentin-composite interface induced by multi-species oral biofilms in vitro. METHODS: Dentin-composite disks (5-mm dia.×2-mm thick) were made from bovine incisor roots and filled with either Z100™ (Z100) or Filtek™ LS (LS) composite. The disks, which were covered with nail varnish, but with one of the dentin-composite margins exposed, were immersed in lactic acid solution at pH 4.5 for up to 48h. Diametral compression was performed to measure the reduction in bond strength of the dentin-composite disks following acid challenge. Scanning electron microscopy (SEM) was used to examine decalcification of dentin and fracture modes of the disks. To better understand the degradation process, micro-computed tomography, in combination with a radiopaque dye (AgNO3), was used to assess interfacial leakage in 3D longitudinally, while SEM was used to determine the path of leakage. One-way analysis of variance (ANOVA) was used to analyze the results, with the level of statistical significance set at p<0.05. The results were compared with those obtained previously using multi-species biofilms for verification and calibration purposes. RESULTS: After 48h of acid challenge, the debonding load of both the LS- and Z100-filled disks reduced significantly (p<0.05). In the Z100-filled disks, debonding mostly occurred at the adhesive-dentin interface, while in the LS-filled disks, this happened at the adhesive-composite interface, instead. The degree of dentin demineralization, the reduction in debonding load and the modes of failure observed were very similar to those induced by multi-species oral biofilms found in the previous work. Leakage of AgNO3 occurred mainly along the hybrid layer. The specimens filled with Z100 had a thicker hybrid layer (∼6.5µm), which exhibited more interfacial leakage than those filled with LS. SIGNIFICANCE: The chemical model with lactic acid used in this study can induce degradation to the dentin-composite interface similar to those produced by multi-species biofilms. With appropriate calibration, this could provide an effective in vitro method for ageing composite restorations in assessing their potential clinical performance.


Subject(s)
Biofilms , Composite Resins/chemistry , Dental Restoration Failure , Dentin/chemistry , Dentin/microbiology , Lactic Acid/chemistry , Silicon Dioxide/chemistry , Zirconium/chemistry , Animals , Calibration , Cattle , Dental Leakage , Dental Restoration, Permanent , Hydrogen-Ion Concentration , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...