Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 291: 154120, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935062

ABSTRACT

Rapeseed (Brassica napus L.) is an important oil-producing crop in China. However, cold stress in winter can adversely affect rapeseed germination and subsequently result in poor seed yield at the mature stage. Studies of differences in the transcriptional and metabolic levels of rapeseed under cold stress can improve our understanding of low-temperature germination (LTG). The current study aimed to identify the cold stress-responsive genes, metabolites, and metabolic pathways based on a combined transcriptome and metabolome analysis to understand the difference of LTG and tolerance mechanisms in the cold-tolerant (Yueyou1301, YY1301) and cold-normal (Fengyou737, FY737) rapeseed varieties. Compared to FY737, YY1301 had a higher germination rate, indole acetic acid (IAA) and gibberellic acid (GA)/(abscisic acid) ABA levels at 7.5 °C. A total of 951 differentially expressed genes (DEGs) and 86 differentially accumulated metabolites (DAMs) were identified in two rapeseed varieties. Conjoint analysis revealed 12 DAMs and 5 DEGs that were strongly correlated in inducing rapeseed LTG, which were mainly related to carbohydrate and amino acid metabolism, specifically the pathway of glutathione metabolism and starch and sucrose metabolism. These results suggest that the DAMs and DEGs involved in crucial biological pathways may regulate the LTG of rapeseed. It increases the understanding of the molecular mechanisms underlying the adaptation of rapeseed to LTG.


Subject(s)
Brassica napus , Brassica rapa , Transcriptome/genetics , Brassica napus/metabolism , Germination/genetics , Gene Expression Profiling/methods , Temperature , Brassica rapa/genetics , Metabolome , Gene Expression Regulation, Plant
2.
Environ Sci Pollut Res Int ; 26(5): 4901-4912, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30569357

ABSTRACT

Currently, the urgency of balancing rice production and environmental risk from nitrogen (N) fertilization is gaining scientific and public attention. As such, a field experiment was conducted to investigate the rice yield and the fate of applied-15N for Yangliangyou 6 (a two-line hybrid cultivar) and Lvdaoq 7 (an inbred cultivar) using 10 combinations of N rates and splitting ratios in the middle reaches of the Yangtze River. The results showed that N application primarily affected fertilizer N loss to the environment, followed by plant N absorption, but had little effect on grain yield. Generally, there was no significant increase in grain yield and N accumulation in the aboveground plant when N inputs surpassed 130 or 170 kg ha-1. Fertilizer N residue in soil peaked at approximately 48 kg ha-1 at an N rate of 170 kg ha-1 for both varieties; however, a sharp increase of fertilizer N loss occurred with further incrementally increasing N rates. Although a higher ratio of panicle-N fertilizer together with a lower ratio of tillering-N fertilizer at rates of 130, 170, and 210 kg ha-1 had no grain yield benefit, it promoted aboveground N accumulation and plant N accumulation derived from fertilizer, and it reduced the amount of N residue in soil and N loss to the environment. Overall, reducing tillering-N ratios and increasing panicle-N ratios at an N rate between 130 and 170 kg ha-1 using fertilizer rates of 90-0-40 kg ha-1 and 90-40-40 kg ha-1 N at basal-tillering-panicle initiation stages could reduce the adverse environmental risks of chemical N from rice production without sacrificing rice yield.


Subject(s)
Crop Production/methods , Fertilizers/analysis , Nitrogen/analysis , Oryza/growth & development , Rivers/chemistry , Water Pollution, Chemical/prevention & control , China , Edible Grain/chemistry , Risk , Soil/chemistry
3.
Environ Sci Pollut Res Int ; 22(7): 4907-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25369916

ABSTRACT

Plants are sessile beings, so the need of mechanisms to flee from unfavorable circumstances has provided the development of unique and sophisticated responses to environmental stresses. Depending on the degree of plasticity, many morphological, cellular, anatomical, and physiological changes occur in plants in response to abiotic stress. Phytohormones are small molecules that play critical roles in regulating plant growth and development, as well as stress tolerance to promote survival and acclimatize to varying environments. To congregate the challenges of salinity, temperature extremes, and osmotic stress, plants use their genetic mechanism and different adaptive and biological approaches for survival and high production. In the present attempt, we review the potential role of different phytohormones and plant growth-promoting rhizobacteria in abiotic stresses and summarize the research progress in plant responses to abiotic stresses at physiological and molecular levels. We emphasized the regulatory circuits of abscisic acid, indole acetic acid, cytokinins, gibberellic acid, salicylic acid, brassinosteroids, jasmonates, ethylene, and triazole on exposure to abiotic stresses. Current progress is exemplified by the identification and validation of several significant genes that enhanced crop tolerance to stress in the field. These findings will make the modification of hormone biosynthetic pathways for the transgenic plant generation with augmented abiotic stress tolerance and boosting crop productivity in the coming decades possible.


Subject(s)
Plants/metabolism , Plants/microbiology , Rhizobium/physiology , Abscisic Acid/metabolism , Plant Development , Plant Growth Regulators/metabolism , Stress, Physiological
4.
Biotechnol Lett ; 36(7): 1407-20, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24658743

ABSTRACT

Rice diseases (bacterial, fungal, or viral) threaten food productivity. Host resistance is the most efficient, environmentally friendly method to cope with such diverse pathogens. Quantitative resistance conferred by quantitative trait loci (QTLs) is a valuable resource for rice disease resistance improvement. Although QTLs confer partial but durable resistance to many pathogen species in different crop plants, the molecular mechanisms of quantitative disease resistance remain mostly unknown. Quantitative resistance and non-host resistance are types of broad-spectrum resistance, which are mediated by resistance (R) genes. Because R genes activate different resistance pathways, investigating the genetic spectrum of resistance may lead to minimal losses from harmful diseases. Genome studies can reveal interactions between different genes and their pathways and provide insight into gene functions. Protein­protein interaction (proteomics) studies using molecular and bioinformatics tools may further enlighten our understanding of resistance phenomena.


Subject(s)
DNA Shuffling , Disease Resistance , Oryza/immunology , Oryza/physiology , Plant Diseases/prevention & control , Oryza/genetics , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...