Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 864
Filter
1.
Nat Sci Sleep ; 16: 639-652, 2024.
Article in English | MEDLINE | ID: mdl-38836216

ABSTRACT

Background: Excessive daytime sleepiness (EDS) forms a prevalent symptom of obstructive sleep apnea (OSA) and narcolepsy type 1 (NT1), while the latter might always be overlooked. Machine learning (ML) models can enable the early detection of these conditions, which has never been applied for diagnosis of NT1. Objective: The study aimed to develop ML prediction models to help non-sleep specialist clinicians identify high probability of comorbid NT1 in patients with OSA early. Methods: Totally, clinical features of 246 patients with OSA in three sleep centers were collected and analyzed for the development of nine ML models. LASSO regression was used for feature selection. Various metrics such as the area under the receiver operating curve (AUC), calibration curve, and decision curve analysis (DCA) were employed to evaluate and compare the performance of these ML models. Model interpretability was demonstrated by Shapley Additive explanations (SHAP). Results: Based on the analysis of AUC, DCA, and calibration curves, the Gradient Boosting Machine (GBM) model demonstrated superior performance compared to other machine learning (ML) models. The top five features used in the GBM model, ranked by feature importance, were age of onset, total limb movements index, sleep latency, non-REM (Rapid Eye Movement) sleep stage 2 and severity of OSA. Conclusion: The study yielded a simple and feasible screening ML-based model for the early identification of NT1 in patients with OSA, which warrants further verification in more extensive clinical practices.

2.
Front Med (Lausanne) ; 11: 1409534, 2024.
Article in English | MEDLINE | ID: mdl-38841589

ABSTRACT

Purpose: Osteoporosis represents a profound challenge to public health, underscoring the critical need to dissect its complex etiology and identify viable targets for intervention. Within this context, the gut microbiota has emerged as a focal point of research due to its profound influence on bone metabolism. Despite this growing interest, the literature has yet to see a bibliometric study addressing the gut microbiota's contribution to both the development and management of osteoporosis. This study aims to fill this gap through an exhaustive bibliometric analysis. Our objective is to uncover current research hotspots, delineate key themes, and identify future research trends. In doing so, we hope to provide direction for future studies and the development of innovative treatment methods. Methods: Relevant publications in this field were retrieved from the Web of Science Core Collection database. We used VOSviewer, CiteSpace, an online analysis platform and the R package "Bibliometrix" for bibliometric analysis. Results: A total of 529 publications (including 351 articles and 178 reviews) from 61 countries, 881 institutions, were included in this study. China leads in publication volume and boast the highest cumulative citation. Shanghai Jiao Tong University and Southern Medical University are the leading research institutions in this field. Nutrients contributed the largest number of articles, and J Bone Miner Res is the most co-cited journal. Of the 3,166 scholars who participated in the study, Ohlsson C had the largest number of articles. Li YJ is the most co-cited author. "Probiotics" and "inflammation" are the keywords in the research. Conclusion: This is the first bibliometric analysis of gut microbiota in osteoporosis. We explored current research status in recent years and identified frontiers and hot spots in this research field. We investigate the impact of gut microbiome dysregulation and its associated inflammation on OP progression, a topic that has garnered international research interest in recent years. Additionally, our study delves into the potential of fecal microbiota transplantation or specific dietary interventions as promising avenues for future research, which can provide reference for the researchers who focus on this research filed.

3.
World J Gastroenterol ; 30(20): 2709-2725, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855154

ABSTRACT

BACKGROUND: Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM: To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS: Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS: HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, ß-leucine (ß-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION: HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. ß-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.


Subject(s)
Colon , Constipation , Disease Models, Animal , Hydrogen , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Animals , Constipation/metabolism , Constipation/drug therapy , Sirtuin 1/metabolism , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Rats , Hydrogen/pharmacology , Male , Colon/drug effects , Colon/metabolism , Colon/pathology , Humans , Water/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Feces/chemistry
4.
Langenbecks Arch Surg ; 409(1): 148, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695994

ABSTRACT

In the past 40 years, the incidence of esophagogastric junction cancer has been gradually increasing worldwide. Currently, surgical resection remains the main radical treatment for early gastric cancer. Due to the rise of functional preservation surgery, proximal gastrectomy has become an alternative to total gastrectomy for surgeons in Japan and South Korea. However, the methods of digestive tract reconstruction after proximal gastrectomy have not been fully unified. At present, the principal methods include esophagogastrostomy, double flap technique, jejunal interposition, and double tract reconstruction. Related studies have shown that double tract reconstruction has a good anti-reflux effect and improves postoperative nutritional prognosis, and it is expected to become a standard digestive tract reconstruction method after proximal gastrectomy. However, the optimal anastomoses mode in current double tract reconstruction is still controversial. This article aims to review the current status of double tract reconstruction and address the aforementioned issues.


Subject(s)
Anastomosis, Surgical , Gastrectomy , Plastic Surgery Procedures , Stomach Neoplasms , Humans , Gastrectomy/methods , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Anastomosis, Surgical/methods , Plastic Surgery Procedures/methods , Esophagogastric Junction/surgery , Surgical Flaps , Jejunum/surgery
5.
Sensors (Basel) ; 24(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732915

ABSTRACT

The precision requirements for aeroengine blade machining are exceedingly stringent. This study aims to improve the accuracy of existing aeroengine blade measurement methods while achieving comprehensive measurement. Therefore, this study proposes a new concentric ring calibration method and designs a multi-layer concentric ring calibration plate. The effectiveness of this calibration method was verified through actual testing of standard ball gauges. Compared with the checkerboard-grid calibration method, the average deviation of the multilayer concentric ring calibration method for measuring the center distance of the standard sphere is 0.02352, which improves the measurement accuracy by 3-4 times. On the basis of multi-layer concentric ring calibration, this study builds a fringe projection profiler based on the three-frequency twelve-step phase shift method. Compared with the CMM, the average deviation of the blade chord length measured by this solution is 0.064, which meets the measurement index requirements of aeroengine fan blades.

6.
Bioact Mater ; 37: 505-516, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698917

ABSTRACT

Tumor metabolite regulation is intricately linked to cancer progression. Because lactate is a characteristic metabolite of the tumor microenvironment (TME), it supports tumor progression and drives immunosuppression. In this study, we presented a strategy for antitumor therapy by developing a nanogold-engineered Rhodospirillum rubrum (R.r-Au) that consumed lactate and produced hydrogen for optical biotherapy. We leveraged a cryogenic micromolding approach to construct a transdermal therapeutic cryomicroneedles (CryoMNs) patch integrated with R.r-Au to efficiently deliver living bacterial drugs. Our long-term storage studies revealed that the viability of R.r-Au in CryoMNs remained above 90%. We found that the CryoMNs patch was mechanically strong and could be inserted into mouse skin. In addition, it rapidly dissolved after administering bacterial drugs and did not produce by-products. Under laser irradiation, R.r-Au effectively enhanced electron transfer through Au NPs actuation into the photosynthetic system of R. rubrum and enlarged lactate consumption and hydrogen production, thus leading to an improved tumor immune activation. Our study demonstrated the potential of CryoMNs-R.r-Au patch as a minimally invasive in situ delivery approach for living bacterial drugs. This research opens up new avenues for nanoengineering bacteria to transform tumor metabolites into effective substances for tumor optical biotherapy.

7.
Sleep Med ; 119: 556-564, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38810481

ABSTRACT

BACKGROUND: Major depression disorder (MDD) forms a common psychiatric comorbidity among patients with narcolepsy type 1 (NT1), yet its impact on patients with NT1 is often overlooked by neurologists. Currently, there is a lack of effective methods for accurately predicting MDD in patients with NT1. OBJECTIVE: This study utilized machine learning (ML) algorithms to identify critical variables and developed the prediction model for predicting MDD in patients with NT1. METHODS: The study included 267 NT1 patients from four sleep centers. The diagnosis of comorbid MDD was based on Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5). ML models, including six full models and six compact models, were developed using a training set. The performance of these models was compared in the testing set, and the optimal model was evaluated in the testing set. Various evaluation metrics, such as Area under the receiver operating curve (AUC), precision-recall (PR) curve and calibration curve were employed to assess and compare the performance of the ML models. Model interpretability was demonstrated using SHAP. RESULT: In the testing set, the logistic regression (LG) model demonstrated superior performance compared to other ML models based on evaluation metrics such as AUC, PR curve, and calibration curve. The top eight features used in the LG model, ranked by feature importance, included social impact scale (SIS) score, narcolepsy severity scale (NSS) score, total sleep time, body mass index (BMI), education years, age of onset, sleep efficiency, sleep latency. CONCLUSION: The study yielded a straightforward and practical ML model for the early identification of MDD in patients with NT1. A web-based tool for clinical applications was developed, which deserves further verification in diverse clinical settings.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124452, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38761559

ABSTRACT

Histamine has been known as a momentous cause of biogenic amine poisoning. Therefore, the content of histamine in foods is strictly required to be controlled within a certain range. Here, an aptamer fluorescent sensor was developed for detection of histamine. Poly [(9, 9-di-n-octylfluorenyl-2, 7-diyl)-alt-(benzo [2,1,3] thiadia-zol-4, 8-diyl)] (PF8BT) and the styrene maleic anhydride copolymer (PSMA) were used for the preparation of PF8BT-Polymer dots (PF8BT-Pdots). PF8BT-Pdots and the cyanine3-phosphoramidite (Cy3) were linked through aptamer to achieve the ratiometric detection for histamine. PF8BT-Pdots were partly quenched by Cy3 due to the fluorescence resonance energy transfer (FRET), when the histamine molecule was recognized by aptamer on the surface of PF8BT-Pdots. A linear range (3-21 µmol/L) was obtained for histamine detection with a low limit of detection (LOD = 0.38 µmol/L). PF8BT aptamer Pdots (PF8BT-A) were used to detect histamine in simply treated aquaculture water and tuna. The cell imaging of HeLa cells presented a good biosecurity and outstanding fluorescent imaging capability of PF8BT-A. The aptamer fluorescent sensors provided a new platform for rapid and accurate detection of histamine in aquatic products and had great potential for the application in food safety and quality control.


Subject(s)
Aptamers, Nucleotide , Histamine , Polymers , Quantum Dots , Histamine/analysis , Aptamers, Nucleotide/chemistry , Polymers/chemistry , Quantum Dots/chemistry , Humans , Limit of Detection , Food Analysis/methods , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Animals , Food Contamination/analysis , HeLa Cells , Spectrometry, Fluorescence/methods
9.
ACS Sens ; 9(5): 2575-2584, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38695880

ABSTRACT

Although electronic textiles that can detect external stimuli show great promise for fire rescue, existing firefighting clothing is still scarce for simultaneously integrating reliable early fire warning and real-time motion sensing, hardly providing intelligent personal protection under complex high-temperature conditions. Herein, we introduce an "all-in-one" hierarchically sandwiched fabric (HSF) sensor with a simultaneous temperature and pressure stimulus response for developing intelligent personal protection. A cross-arranged structure design has been proposed to tackle the serious mutual interference challenge during multimode sensing using two separate sets of core-sheath composite yarns and arrayed graphene-coated aerogels. The functional design of the HSF sensor not only possesses wide-range temperature sensing from 25 to 400 °C without pressure disturbance but also enables highly sensitive pressure response with good thermal adaptability (up to 400 °C) and wide pressure detection range (up to 120 kPa). As a proof of concept, we integrate large-scalable HSF sensors onto conventional firefighting clothing for passive/active fire warning and also detecting spatial pressure and temperature distribution when a firefighter is exposed to high-temperature flames, which may provide a useful design strategy for the application of intelligent firefighting protective clothing.


Subject(s)
Pressure , Temperature , Textiles , Textiles/analysis , Humans , Fires , Firefighters , Protective Clothing , Graphite/chemistry , Wearable Electronic Devices
10.
Nat Commun ; 15(1): 3748, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702298

ABSTRACT

The high redox potential of Zn0/2+ leads to low voltage of Zn batteries and therefore low energy density, plaguing deployment of Zn batteries in many energy-demanding applications. Though employing high-voltage cathode like spinel LiNi0.5Mn1.5O4 can increase the voltages of Zn batteries, Zn2+ ions will be immobilized in LiNi0.5Mn1.5O4 once intercalated, resulting in irreversibility. Here, we design a polymer hetero-electrolyte consisting of an anode layer with Zn2+ ions as charge carriers and a cathode layer that blocks the Zn2+ ion shuttle, which allows separated Zn and Li reversibility. As such, the Zn‖LNMO cell exhibits up to 2.4 V discharge voltage and 450 stable cycles with high reversible capacity, which are also attained in a scale-up pouch cell. The pouch cell shows a low self-discharge after resting for 28 days. The designed electrolyte paves the way to develop high-voltage Zn batteries based on reversible lithiated cathodes.

11.
Gene ; 925: 148600, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788814

ABSTRACT

BACKGROUND: Traboulsi syndrome is an under-recognized syndromic form of ectopia lentis (EL) caused by the aspartate beta-Hydroxylase (ASPH) variant. The genotype-phenotype profile of ASPH-associated disease is poorly understood due to the rarity of the condition. METHODS: We conducted targeted next-generation sequencing and bioinformatics analysis to identify potentially pathogenic ASPH variants in the cohort. Furthermore, we characterized the expression pattern of ASPH and major components of the zonules using single-cell RNA-sequencing (scRNA-seq) and evaluated the genotype-phenotype correlations by combining our data and those from the literature. RESULTS: We identified a novel missense variant c.2075G > A (p.G692D) and a recurrent nonsense variant c.1126C > G (p.R376*) of ASPH in two pedigrees from a Chinese cohort of EL. Both probands were 5-year-old boys with canonical facial dysmorphisms and bilateral anteriorly-dislocated lenses. Other ocular comorbidities included microspherophakia, shallow anterior chamber, and narrow chamber angel. No cardiac involvements or filtering blebs were identified. The single-cell expression atlas of ciliary epithelium demonstrated the coexpression of ASPH with FBN1, FBN2, and LTBP2 in the non-pigmented ciliary epithelium cells. Furthermore, molecular modeling simulation of p.G692D revealed increased affinity to the cb EGF-like domain and a subsequent destabilized calcium-binding motif. The genotype-phenotype analysis demonstrated that patients with cardiac involvements all harbored biallelic truncation variants. CONCLUSIONS: The data from this study provide new insights into the genotype-phenotype profile of ASPH-associated disease and implicate the potential role of ASPH in the pathogenesis of EL.

12.
Acta Pharmacol Sin ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671193

ABSTRACT

Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.

13.
Biochem Biophys Res Commun ; 710: 149883, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38588611

ABSTRACT

Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.


Subject(s)
Chaperonin 60 , Heart Defects, Congenital , Animals , Mice , Chaperonin 60/genetics , Chaperonin 60/metabolism , Heart Defects, Congenital/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Myocytes, Cardiac/metabolism
14.
Clin Cancer Res ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578683

ABSTRACT

PURPOSE: Current NCCN guidelines recommend afatinib or osimertinib as the preferred first-line treatment strategy for patients with advanced NSCLC harboring EGFR p.G719X mutation. However, in the absence of head-to-head trials comparing afatinib with osimertinib in EGFR p.G719X mutant patients, it is unclear which regimen is the preferred treatment option. EXPERIMENTAL DESIGN: A large cohort of 4228 treatment-naïve patients with lung cancer who underwent targeted NGS testing was screened for EGFR p.G719X mutation. A multicenter cohort involving 68 EGFR p.G719X-mutant patients with advanced NSCLC and NGS profiling was retrospectively enrolled to evaluate clinical responses to afatinib(n=37) and the third-generation EGFR-TKIs(n=31). Ba/F3 cells stably expressing the EGFR p.G719A mutation were created to investigate the response to EGFR-TKIs in vitro. RESULTS: Concurrent EGFR p.E709X mutations, being the most frequent co-occurring EGFR mutation in EGFR p.G719X-mutant NSCLC(~30%), exerted a detrimental effect on outcomes in patients treated with third-generation EGFR-TKI(G719X/E709X vs. G719X; ORR:0.00% vs. 47.62%, P<0.001; mPFS:7.18 vs. 14.2 months, P=0.04; respectively). Conversely, no significant difference was found in the treatment efficacy of afatinib between EGFR p.G719X/E709X and EGFR p.G719X patients(G719X/E709X vs. G719X; ORR:71.43% vs. 56.67%, P=0.99; mPFS:14.7 vs. 15.8 months, P=0.69; respectively). In vitro experiments elucidated a resistant drug sensitivity and poor inhibition of EGFR phosphorylation in Ba/F3 cells expressing EGFR p.G719A/E709K mutation upon the third-generation EGFR-TKIs treatment. CONCLUSION: Co-occurring EGFR p.E709X mutation mediates primary resistance to the third-generation EGFR-TKIs in EGFR p.G719X-mutant patients but remained sensitive to afatinib. A personalized treatment strategy should be undertaken based on the co-existing EGFR p.E709X mutation status.

15.
Materials (Basel) ; 17(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38591381

ABSTRACT

Limited research has been undertaken regarding the homogeneity of CoCrPtB alloy billets. A CoCrPtB alloy was processed through casting and vacuum hot pressing. This investigation delved into the interconnection between the secondary dendrite arm spacing (SDAS) in the as-hot-pressed samples and their corresponding attributes, specifically Vickers hardness and magnetic properties. Systematic sampling was conducted on the cross-sectional layer and longitudinal surface. Upon examination of the cross-sectional layer proximate to the uppermost region of the hot casting, a discernible parabolic trend was observed for the SDAS that exhibited a gradual increment from the peripheral regions toward the central area along the width. Simultaneously, the fraction of the dendrite phase displayed a consistent linear decline, attaining its peak value at the central portion of the billet. Conversely, on the longitudinal surface, SDAS and the fraction of the dendrite phase remained fairly uniform within the same column sampling regions. However, a notable divergence was identified in the central section, characterized by an augmented SDAS and diminished dendrite phase content. This inherent microstructural inhomogeneity within the CoCrPtB alloy engendered discernible disparities in material properties.

16.
Adv Mater ; : e2401924, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593988

ABSTRACT

With the increasing need for reliable storage systems, the conversion-type chemistry typified by bromine cathodes attracts considerable attention due to sizeable theoretical capacity, cost efficiency, and high redox potential. However, the severe loss of active species during operation remains a problem, leading researchers to resort to concentrated halide-containing electrolytes. Here, profiting from the intrinsic halide exchange in perovskite lattices, a novel low-dimensional halide hybrid perovskite cathode, TmdpPb2[IBr]6, which serves not only as a halogen reservoir for reversible three-electron conversions but also as an effective halogen absorbent by surface Pb dangling bonds, C─H…Br hydrogen bonds, and Pb─I…Br halogen bonds, is proposed. As such, the Zn||TmdpPb2[IBr]6 battery delivers three remarkable discharge voltage plateaus at 1.21 V (I0/I-), 1.47 V (I+/I0), and 1.74 V (Br0/Br-) in a typical halide-free electrolyte; meanwhile, realizing a high capacity of over 336 mAh g-1 at 0.4 A g-1 and high capacity retentions of 88% and 92% after 1000 cycles at 1.2 A g-1 and 4000 cycles at 3.2 A g-1, respectively, accompanied by a high coulombic efficiency of ≈99%. The work highlights the promising conversion-type cathodes based on metal-halide perovskite materials.

17.
Nano Lett ; 24(18): 5521-5528, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38662651

ABSTRACT

Exploring multiple states based on the domain wall (DW) position has garnered increased attention for in-memory computing applications, particularly focusing on the utilization of spin-orbit torque (SOT) to drive DW motion. However, devices relying on the DW position require efficient DW pinning. Here, we achieve granular magnetization switching by incorporating an HfOx insertion layer between the Co/Ti interface. This corresponds to a transition in the switching model from the DW motion to DW nucleation. Compared to the conventional Pt/Co/Ti structure, incorporation of the HfOx layer results in an enhanced SOT efficiency and a lower switching current density. We also realized stable multistate storage and synaptic plasticity by applying pulse current in the Pt/Co/HfOx/Ti device. The simulation of artificial neural networks (ANN) based on the device can perform digital recognition tasks with an accuracy rate of 91%. These results identify that DW nucleation with a Pt/Co/HfOx/Ti based device has potential applications in multistate storage and ANN.

18.
Cell Rep ; 43(4): 114086, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598335

ABSTRACT

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.


Subject(s)
Interleukin-12 , Probiotics , Programmed Cell Death 1 Receptor , Animals , Interleukin-12/metabolism , Probiotics/pharmacology , Mice , Programmed Cell Death 1 Receptor/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Humans , Mice, Inbred C57BL , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Escherichia coli/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles , Female , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology
19.
Cell Rep ; 43(5): 114140, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656873

ABSTRACT

Women are more vulnerable to stress and have a higher likelihood of developing mood disorders. The serotonin (5HT) system has been highly implicated in stress response and mood regulation. However, sex-dependent mechanisms underlying serotonergic regulation of stress vulnerability remain poorly understood. Here, we report that adult hippocampal neural stem cells (NSCs) of the Ascl1 lineage (Ascl1-NSCs) in female mice express functional 5HT1A receptors (5HT1ARs), and selective deletion of 5HT1ARs in Ascl1-NSCs decreases the Ascl1-NSC pool only in females. Mechanistically, 5HT1AR deletion in Ascl1-NSCs of females leads to 5HT-induced depolarization mediated by upregulation of 5HT7Rs. Furthermore, repeated restraint stress (RRS) impairs Ascl1-NSC maintenance through a 5HT1AR-mediated mechanism. By contrast, Ascl1-NSCs in males express 5HT7R receptors (5HT7Rs) that are downregulated by RRS, thus maintaining the Ascl1-NSC pool. These findings suggest that sex-specific expression of distinct 5HTRs and their differential interactions with stress may underlie sex differences in stress vulnerability.


Subject(s)
Hippocampus , Neural Stem Cells , Receptors, Serotonin , Stress, Psychological , Animals , Neural Stem Cells/metabolism , Female , Hippocampus/metabolism , Male , Mice , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics , Stress, Psychological/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Sex Characteristics , Mice, Inbred C57BL , Serotonin/metabolism
20.
Front Med (Lausanne) ; 11: 1303672, 2024.
Article in English | MEDLINE | ID: mdl-38439902

ABSTRACT

Background: This study aimed to understand the knowledge, attitude, and practice (KAP) of drug use among residents in western China and its influencing factors for accurately designing the knowledge, contents, and methods of popular science activities for safe drug use among residents to provide a reference for conducting rational drug use educational activities and improving residents' level of safe drug use. Methods: A cross-sectional questionnaire survey was conducted to investigate the KAP of medication among western China residents and its influencing factors from March to April 2023. Each question option was assigned a score according to logic, and the risk factors for resident medication safety KAP were explored through univariate and logistic regression analyses. Results: A total of 7,557 valid questionnaires were collected, with an effective recovery rate of 96.7%. The average scores of KAP were 72.77 ± 22.91, 32.89 ± 10.64, and 71.27 ± 19.09, respectively. In the evaluation criteria of the questionnaire, the score of medication knowledge reached "good," and the score of attitude and practice was "average." Multiple linear regression analysis indicated that male sex and low education level were significant factors affecting the lack of drug knowledge among residents. Old age and low education level were the factors of poor attitude toward medication. The low condition of medical security was a factor in residents' irregular drug use behavior. Conclusion: The overall level of rational drug use among residents in western China is good, but there are still some inconsistencies. Rational drug use education should be conducted according to the risk points of residents in drug safety KAP to further improve the level of rational drug use of residents.

SELECTION OF CITATIONS
SEARCH DETAIL
...