Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Materials (Basel) ; 17(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998409

ABSTRACT

This paper introduces an electromagnetic structure utilizing the controllable mechanical properties of magnetorheological elastomer (MRE) materials through magnetic flux. An adaptive elastic foundation composed of these materials is explored for vibration reduction and frequency modulation. This study investigates these effects using both a single-mass model and a coupled human-seat model. For objects supported by the adaptive elastic foundation, increasing the magnetic flux enhances the stiffness and damping, thereby significantly reducing the peak response while slightly increasing the resonance frequency. Strategies such as increasing the magnetic flux, reducing the object mass, and minimizing the system's degrees of freedom and internal damping contribute to enhancing the vibration reduction and frequency modulation in the adaptive elastic foundation. The simulation results indicate that for a seated human (weighing between 72.4 kg and 88.4 kg), the adaptive elastic foundation reduces the head peak response by approximately 15.7% and increases the resonance frequency by approximately 3.4% at a magnetic flux of 138 mT.

2.
Neural Netw ; 178: 106482, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38945116

ABSTRACT

In practical engineering, obtaining labeled high-quality fault samples poses challenges. Conventional fault diagnosis methods based on deep learning struggle to discern the underlying causes of mechanical faults from a fine-grained perspective, due to the scarcity of annotated data. To tackle those issue, we propose a novel semi-supervised Gaussian Mixed Variational Autoencoder method, SeGMVAE, aimed at acquiring unsupervised representations that can be transferred across fine-grained fault diagnostic tasks, enabling the identification of previously unseen faults using only the small number of labeled samples. Initially, Gaussian mixtures are introduced as a multimodal prior distribution for the Variational Autoencoder. This distribution is dynamically optimized for each task through an expectation-maximization (EM) algorithm, constructing a latent representation of the bridging task and unlabeled samples. Subsequently, a set variational posterior approach is presented to encode each task sample into the latent space, facilitating meta-learning. Finally, semi-supervised EM integrates the posterior of labeled data by acquiring task-specific parameters for diagnosing unseen faults. Results from two experiments demonstrate that SeGMVAE excels in identifying new fine-grained faults and exhibits outstanding performance in cross-domain fault diagnosis across different machines. Our code is available at https://github.com/zhiqan/SeGMVAE.

3.
Water Res ; 257: 121670, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723347

ABSTRACT

In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.


Subject(s)
Bioreactors , Coke , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Hydrolysis , Biological Oxygen Demand Analysis , Water Pollutants, Chemical , Anaerobiosis , Catalysis
4.
Sci Rep ; 14(1): 6427, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499618

ABSTRACT

Four-degree-of-freedom (4-DOF) human-chair coupling models are constructed to characterize the different contact modes between the head, chest back, waist back and backrest. The seat-to-head transfer ratio (STHT) is used as an evaluation metric for vibration reduction effectiveness. The simulated vibration reduction ratio of the model is close to the experimental results, which proves the validity of the model. The peak STHT is obviously reduced (P < 0.05, T-test) with seat-backrest support. The experiments show that supporting the head ( a 1 , P < 0.05, Wilcoxon matched-pairs signed ranks) has the best vibration reduction effect (21%), supporting the chest back ( a 2 , P < 0.05) has a reduced effect (11%), and supporting the waist back ( a 3 , P < 0.05) has the weakest effect (4%). When the upper torso is in full contact with the backrest, the peak STHT curve and resonance frequency are positively correlated with the contact stiffness of the seat surface and negatively correlated with the contact damping. In order to reduce the seat-to-head transfer ratio, the lowest STHT peak and lowest total energy judgments were proposed as the selection methods for the selection of the contact stiffness and damping of the backrest in two environments (periodic and non-periodic excitation), respectively.


Subject(s)
Sitting Position , Vibration , Humans , Human Body , Back/physiology , Posture/physiology , Biomechanical Phenomena
5.
Int J Biol Macromol ; 259(Pt 2): 129185, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176485

ABSTRACT

Polyhydroxyalkanoates (PHA) recovery from industrial wastewater has been highlighted as a promising strategy for a circular bioeconomy. However, the high and varying level of nitrogen in wastewater makes enrichment of mixed microbial culture (MMC) low efficiency. In this study, spatial separation of nitrifiers and denitrifiers was adopted by adding biocarriers in MMC and decreasing the sludge retention time (SRT) to accelerate the enrichment of PHA-storing MMC fed by mixed wastewater containing glycerol and propionate. Nitrifiers and denitrifiers were sustained on biocarriers, obtaining a high total inorganic nitrogen removal and allowing a more efficient selective pressure of a high carbon and nitrogen ratio (C/N) under low SRT conditions. The maximum PHA cell content and relative abundance of PHA-storing bacteria were increased to 60.51 % (SRT 6 d) and 49.62 % (SRT 6 d) with the decrease of SRT, respectively. This study demonstrates an efficient way to highly enrich PHA-storing MMC from crude glycerol, which provide a relevant technical support for high-efficiency enrichment of PHA-storing bacteria in low C/N wastewater.


Subject(s)
Polyhydroxyalkanoates , Wastewater , Bioreactors/microbiology , Glycerol , Propionates , Sewage , Bacteria , Nitrogen
6.
Materials (Basel) ; 16(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068026

ABSTRACT

Isotropic magnetorheological elastomers (MREs) with hybrid-size particles are proposed to tailor the zero-field elastic modulus and the relative magnetorheological rate. The hyperelastic magneto-mechanical property of MREs with hybrid-size CIPs (carbonyl iron particles) was experimentally investigated under large strain, which showed differential hyperelastic mechanical behavior with different hybrid-size ratios. Quasi-static magneto-mechanical compression tests corresponding to MREs with different hybrid size ratios and mass fractions were performed to analyze the effects of hybrid size ratio, magnetic flux density, and CIP mass fraction on the magneto-mechanical properties. An extended Knowles magneto-mechanical hyperelastic model based on magnetic energy, coupling the magnetic interaction, is proposed to predict the influence of mass fraction, hybrid size ratio, and magnetic flux density on the magneto-mechanical properties of isotropic MRE. Comparing the experimental and predicted results, the proposed model can accurately evaluate the quasi-static compressive magneto-mechanical properties, which show that the predicted mean square deviations of the magneto-mechanical constitutive curves for different mass fractions are all in the range of 0.9-1. The results demonstrate that the proposed hyperelastic magneto-mechanical model, evaluating the magneto-mechanical properties of isotropic MREs with hybrid-size CIPs, has a significant stress-strain relationship. The proposed model is important for the characterization of magneto-mechanical properties of MRE-based smart devices.

7.
Environ Technol ; : 1-10, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37534577

ABSTRACT

ABSTRACTThe distribution and removal pathways of heavy metals within different sludge treatment wetlands (STWs) during different running periods in Northeast China have not been well studied. In this study, we examined three STWs, i.e. an STW with aeration tubes only (unit 1; U1), an STW with reeds and aeration tubes (unit 2; U2), and an STW with reeds only (unit 3; U3). The results showed that the levels of Cu as well as Zn accumulated faster within STW residual sludge, whereas the levels of Cd, Cr, Ni, and Pb accumulated more slowly and decreased slightly over time. The removal rates of heavy metals from the influent sludge by STWs ranged from 64.5% (Cr) to 92.2% (Zn). Reeds removed heavy metals from the STWs by direct absorption, and Zn was highly enriched in the reeds. The presence of reeds also promoted the spreading of heavy metals to the substrate layer and improved the removal of heavy metals in STWs. The mass of each heavy metal accumulated within the residual sludge of U2 and U3 was lower than that of U1, indicating that reeds could facilitate the removal of heavy metals. The STWs removed heavy metal mainly by substrate adsorption, and the mass percentage of heavy metals accumulated in the substrate ranged from 35.8 to 63.6%.

8.
Materials (Basel) ; 16(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049023

ABSTRACT

The vibration suppression performance of the pyramid lattice core sandwich plates is receiving increasing attention and needs further investigation for technical upgrading of potential engineering applications. Inspired by the localized resonant mechanism of the acoustic metamaterials and considering the integrity of the lattice sandwich plate, we reshaped a sandwich pyramid lattice core with resonant rings (SPLCRR). Finite element (FE) models are built up for the calculations of the dispersion curves and vibration transmission. The validity of the bandgap of the SPLCRR and remarkable vibration suppression are verified by experimental observations and the numerical methods. Furthermore, the effects of geometric parameters, material parameters and period parameters on the bandgaps of the SPLCRR are systematically investigated, which offers a deeper understanding of the underlying mechanism of bandgap and helps the SPLCRR structure meet the technological update requirements of practical engineering design.

9.
Chaos ; 33(3): 033113, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37003814

ABSTRACT

A brush seal has the advantages of adapting to different vibration conditions and increasing the stability of the nonlinear rotor system. In this research, the stability and bifurcations of complex vibrations in a brush-seal rotor system are studied. An analytical seal force model is obtained through the beam theory and mutual coupling dynamics of the bristles and the rotor. The interaction between the bristles and the rotor is clearly depicted by a geometric map. Periodic and chaotic vibrations as well as the corresponding amplitude-frequency characteristics are first predicted by a numerical bifurcation diagram and 3D waterfalls. Discrete dynamic eigenvalue analysis is adopted for a detailed investigation of the stability and bifurcations of nonlinear vibrations. Jumping, quasi-periodic, and half-frequency vibrations are warned during the speeding up and down process. Four separate nonlinear vibration evolving routes are discovered. Two period-doubling bifurcation trees evolving to chaos are illustrated for the observation of global and independent periodic vibrations. Nonlinear vibration illustrations are presented through displacement orbits as well as harmonic amplitudes and phases. Chaotic vibration and unstable semi-analytical vibration solutions are compared. The obtained results and analysis methods provide new perspectives on nonlinear vibrations in the brush-seal rotor system.

10.
Bioresour Technol ; 374: 128758, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36801440

ABSTRACT

Nitrogen (N) removal from high-salinity wastewater is a major challenge. The aerobic-heterotrophic nitrogen removal (AHNR) process has been demonstrated to be feasible for treating hypersaline wastewater. In this study, Halomonas venusta SND-01, a halophilic strain capable of performing AHNR, was isolated from saltern sediment. The strain achieved ammonium, nitrite, and nitrate removal efficiencies of 98%, 81%, and 100%, respectively. The N balance experiment suggests that this isolate removes N mainly via assimilation. Various functional genes related to N metabolism were found in the genome of the strain, establishing a complex AHNR pathway that includes ammonium assimilation, heterotrophic nitrification-aerobic denitrification, and assimilatory nitrate reduction. Four key enzymes in the N removal process were successfully expressed. The strain exhibited high-adaptability under C/N ratios of 5-15, salinities of 2%-10% (m/v), and pH of 6.5-9.5. Therefore, the strain shows high potential for treating saline wastewater with different inorganic N compositions.


Subject(s)
Ammonium Compounds , Nitrification , Denitrification , Ammonium Compounds/metabolism , Nitrates/metabolism , Wastewater , Nitrogen/metabolism , Aerobiosis , Nitrites/metabolism , Heterotrophic Processes
11.
ACS Appl Mater Interfaces ; 15(6): 7686-7699, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36723979

ABSTRACT

The functional hierarchical structures of the triply periodic minimal surface are receiving much attention in tissue engineering applications due to their lightweight and multifunctionality. However, current functionally graded structure design methods are not friendly to heterogeneous structures containing different orientations and different unit types and often face the problems of insufficient connection in the hybrid regions and low local stiffness. In this paper, an improved gradient structure design method was proposed, which solves the problem of insufficient connection between substructures by constructing hybrid region transition functions. Three improved heterogeneous structures were constructed using Primitive and Gyroid lattices and compared with the unimproved heterogeneous structure. Their mechanical properties, deformation mechanism, and energy absorption capacity were examined by finite element analysis and experiments. The results showed that the proposed design method can effectively solve the problems of insufficient connection and poor bearing capacity in the hybrid region between substructures. This method can not only ensure the full connection of the hybrid regions but also flexibly adjust the mechanical properties and energy absorption capacity as well as effectively expand the application range of the energy absorption. Overall, these findings provide valuable guidelines for designing gradient structures with disordered and hybrid features.

12.
Environ Technol ; 44(24): 3685-3697, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35466863

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) show adverse impacts on aerobic denitrifying bacteria, little is known about the response of these bacteria to ZnO NPs exposure at cellular level. This study assessed the multiple responses of Pseudomonas aeruginosa PCN-2 under ZnO NPs exposure. We demonstrated that ZnO NPs exposure could inhibit the intracellular metabolism and stimulate the antioxidant defence capability of PCN-2. At lower exposure concentration (5 mg/L), exogenous ROS generated and resulted in the inhibition of pyruvate metabolism and citrate cycle, which caused deficient energy for aerobic denitrification. At higher concentrations (50 mg/L), endogenous ROS additionally generated and triggered to stronger down-regulation of oxidative phosphorylation, which caused suppressed electron transfers for aerobic denitrification. Meanwhile, ZnO NPs exposure promoted EPS production and biofilm formation, and antioxidases was especially particularly stimulated at higher concentration. Our findings are significant for understanding of microbial bacterial susceptibility, tolerance and resistance under the exposure of ZnO NPs.


Aerobic denitrification is suppressed with increased ZnO NPs concentrations.ZnO NPs induce inhibition of pyruvate metabolism and citrate cycle at 5 mg/L.Higher ZnO NPs concentration induces the generation of endogenous and exogenous ROS.Higher NPs concentration leads to the trigger of antioxidant system.ZnO NPs stimulate metabolisms of EPS production.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Denitrification , Reactive Oxygen Species , Transcriptome
13.
Biomech Model Mechanobiol ; 22(2): 541-560, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36550240

ABSTRACT

Triply periodic minimal surface (TPMS) has a promising application in the design of bone scaffolds due to its relevance in bone structure. Notably, the mechanical properties of TPMS scaffolds can be affected by many factors, including the spatial angle and surface curvature, which, however, remain to be discovered. This paper illustrates our study on the mechanical properties of tissue scaffolds consisting of TPMS structures (Primitive and I-WP) by considering the influence of spatial angle and surface curvature. Also, the development of a novel model representative of the mechanical properties of scaffolds based on the entropy weight fuzzy comprehensive evaluation method is also presented. For experimental investigation and validation, we employed the selective laser melting technology to manufacture scaffolds with varying structures from AlSi10Mg powder and then performed mechanical testing on the scaffolds. Our results show that for a given porosity, the Gaussian curvature of the stretched TPMS structures is more concentrated and have a higher elastic modulus and fatigue life. At the spatial angle θ = 27°, the shear modulus of the primitive unit reaches its largest value; the shear modulus of the I-WP unit is positively correlated with the spatial angle. Additionally, it is found that the comprehensive mechanical properties of TPMS structures can be significantly improved after changing the surface curvature. Taken together, the identified influence of spatial angle and surface curvature and the developed models of scaffold mechanical properties would be of significant advance and guidance for the design and development of bone scaffolds.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Surface Properties , Tissue Scaffolds/chemistry , Bone and Bones , Porosity
14.
Front Plant Sci ; 13: 946213, 2022.
Article in English | MEDLINE | ID: mdl-35923880

ABSTRACT

The biological functions of the circadian clock on growth and development have been well elucidated in model plants, while its regulatory roles in crop species, especially the roles on yield-related traits, are poorly understood. In this study, we characterized the core clock gene CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) homoeologs in wheat and studied their biological functions in seedling growth and spike development. TaCCA1 homoeologs exhibit typical diurnal expression patterns, which are positively regulated by rhythmic histone modifications including histone H3 lysine 4 trimethylation (H3K4me3), histone H3 lysine 9 acetylation (H3K9Ac), and histone H3 lysine 36 trimethylation (H3K36me3). TaCCA1s are preferentially located in the nucleus and tend to form both homo- and heterodimers. TaCCA1 overexpression (TaCCA1-OE) transgenic wheat plants show disrupted circadian rhythmicity coupling with reduced chlorophyll and starch content, as well as biomass at seedling stage, also decreased spike length, grain number per spike, and grain size at the ripening stage. Further studies using DNA affinity purification followed by deep sequencing [DNA affinity purification and sequencing (DAP-seq)] indicated that TaCCA1 preferentially binds to sequences similarly to "evening elements" (EE) motif in the wheat genome, particularly genes associated with photosynthesis, carbon utilization, and auxin homeostasis, and decreased transcriptional levels of these target genes are observed in TaCCA1-OE transgenic wheat plants. Collectively, our study provides novel insights into a circadian-mediated mechanism of gene regulation to coordinate photosynthetic and metabolic activities in wheat, which is important for optimal plant growth and crop yield formation.

15.
Bioresour Technol ; 361: 127725, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35926557

ABSTRACT

An eco-friendly strategy for mariculture wastewater treatment using an electric field attached membrane bioreactor (E-MBR) was evaluated and compared with a conventional membrane bioreactor (C-MBR). The removal efficiencies of total nitrogen (TN) and chemical oxygen demand (COD) increased significantly and the membrane fouling rate reduced by 44.8% in the E-MBR. The underlying mechanisms included the enriched nitrifiers and denitrifiers, the enhanced salinity-resistance, the increased activities and upregulated genes of key enzymes involved in nitrification and denitrification for improving the performance of mariculture wastewater treatment, and the enriched extracellular polymeric substance (EPS)-degrading genera, the downregulated EPS biosynthesis genes, the repressed biofilm-forming bacteria, the enhanced zeta potential absolute value and the generated H2O2 for membrane fouling mitigation by electrical stimulation. Compared with the C-MBR, the energy consumption, carbon emissions, and nitrogen footprint were reduced. These findings provide novel insights into mariculture wastewater treatment using an applied electric field.


Subject(s)
Extracellular Polymeric Substance Matrix , Wastewater , Bioreactors/microbiology , Hydrogen Peroxide , Membranes, Artificial , Nitrogen , Sewage/microbiology , Wastewater/chemistry
16.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897633

ABSTRACT

Temperature-sensitive genic male sterile (TGMS) line Beijing Sterility 366 (BS366) has been utilized in hybrid breeding for a long time, but the molecular mechanism underlying male sterility remains unclear. Expression arrays, small RNA, and degradome sequencing were used in this study to explore the potential role of miRNA in the cold-induced male sterility of BS366. Microspore observation showed defective cell plates in dyads and tetrads and shrunken microspores at the vacuolated stage. Differential regulation of Golgi vesicle transport, phragmoplast formation, sporopollenin biosynthesis, pollen exine formation, and lipid metabolism were observed between cold and control conditions. Pollen development was significantly represented in the 352 antagonistic miRNA-target pairs in the integrated analysis of miRNA and mRNA profiles. The specific cleavage of ARF17 and TIR1 by miR160 and miR393 were found in the cold-treated BS366 degradome, respectively. Thus, the cold-mediated miRNAs impaired cell plate formation through repression of Golgi vesicle transport and phragmoplast formation. The repressed expression of ARF17 and TIR1 impaired pollen exine formation. The results of this study will contribute to our understanding of the roles of miRNAs in male sterility in wheat.


Subject(s)
MicroRNAs , Plant Infertility , Triticum , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Breeding , Plant Infertility/genetics , Temperature , Triticum/genetics
17.
BMC Plant Biol ; 22(1): 290, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698040

ABSTRACT

BACKGROUND: Histone methylation usually plays important roles in plant development through post-translational regulation and may provide a new visual field for heterosis. The histone methyltransferase gene family has been identified in various plants, but its members and functions in hybrid wheat related in heterosis is poorly studied. RESULTS: In this study, 175 histone methyltransferase (HMT) genes were identified in wheat, including 152 histone lysine methyltransferase (HKMT) genes and 23 protein arginine methyltransferase (PRMT) genes. Gene structure analysis, physicochemical properties and subcellular localization predictions of the proteins, exhibited the adequate complexity of this gene family. As an allohexaploid species, the number of the genes (seven HKMTs orthologous groups and four PRMTs orthologous groups) in wheat were about three times than those in diploids and showed certain degrees of conservation, while only a small number of subfamilies such as ASH-like and Su-(var) subfamilies have expanded their members. Transcriptome analysis showed that HMT genes were mainly expressed in the reproductive organs. Expression analysis showed that some TaHMT genes with different trends in various hybrid combinations may be regulated by lncRNAs with similar expression trends. Pearson correlation analysis of the expression of TaHMT genes and two yield traits indicated that four DEGs may participate in the yield heterosis of two-line hybrid wheat. ChIP-qPCR results showed that the histone modifications (H3K4me3, H3K36me3 and H3K9ac) enriched in promoter regions of three TaCCA1 genes which are homologous to Arabidopsis heterosis-related CCA1/LHY genes. The higher expression levels of TaCCA1 in F1 than its parents are positive with these histone modifications. These results showed that histone modifications may play important roles in wheat heterosis. CONCLUSIONS: Our study identified characteristics of the histone methyltransferase gene family and enhances the understanding of the evolution and function of these members in allohexaploid wheat. The causes of heterosis of two-line hybrid wheat were partially explained from the perspective of histone modifications.


Subject(s)
Arabidopsis , Triticum , Arabidopsis/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Histone Methyltransferases/genetics , Hybrid Vigor/genetics , Triticum/genetics
18.
ACS Biomater Sci Eng ; 8(4): 1623-1643, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35285609

ABSTRACT

The design of scaffolds for tissue engineering has to consider two trade-off properties: mechanical and mass-transport properties. This is particularly true for additively manufactured scaffolds with the structures of minimal surfaces, and notably, the influence of the surface curvature of the structure on the mechanical and mass-transport properties remains unclear. This work presents our study on the scaffolds designed with the structure of triply periodic minimal surfaces (TPMS), with a focus on discovering the influence of surface curvature on the mechanical response and the mass-transport property or permeability of the scaffolds. Based on the entropy weight fuzzy comprehensive evaluation method, a model representative of both mechanical and permeable properties of scaffolds was developed; scanning electron microscopy (SEM) and finite element analysis (FEA) were also used to reveal the influence mechanism of curvature on structural fracture and deformation behavior. AlSi10Mg samples of scaffolds designed with different surface curvatures were manufactured using selective laser melting (SLM), and their mechanical and permeable properties were examined and characterized by both experiments and simulations. Our results illustrate that at the same porosity, the more concentrated the curvature distribution of the same type of unit, the better trade-off mechanical and mass-transport properties the scaffolds have. Particularly, at the porosity of 55%, the compressive elastic modulus and permeability of the Dte structure are increased by 2.03 times and 1.95 times compared with the Diamond unit, respectively. The fusion structure can greatly improve permeability performance at the cost of mechanical properties. Our results also show that porosity has the greatest influence on mechanical and permeable properties, followed by the surface curvature. The study illustrates that the surface curvature has a significant influence on the mechanical and permeable properties of scaffolds, and that the developed scaffold performance evaluation scheme is an effective means for the optimization and evaluation of scaffold performance.


Subject(s)
Bone and Bones , Tissue Scaffolds , Elastic Modulus , Porosity , Tissue Engineering/methods , Tissue Scaffolds/chemistry
19.
Water Res ; 213: 118153, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35152135

ABSTRACT

Electrochemical anaerobic membrane bioreactor attracted attention due to stable treatment quality with low footprint, and draw solute has significant effect on the sludge characteristics and membrane fouling performance. In this pilot-scale study, an electrochemical anaerobic membrane bioreactor (E-AnMBR) was proposed for treating pesticide wastewater at different hydraulic retention times (HRTs), demonstrating that E-AnMBR was superior on improvement of sludge characteristics and mitigation of membrane fouling, compared with the conventional anaerobic membrane bioreactor (C-AnMBR). E-AnMBR reduced sludge yield by 41.2 ± 6.7% and the SVI was significantly decreased by 32.5±13.8%. The accumulation of VFA in E-AnMBR was slighter than that of C-AnMBR, and the minimum average VFA was 255±6 mg/L. The methane yield of E-AnMBR (0.22-0.29 L CH4/g CODremoved) was 1.2-1.4 times than that of C-AnMBR. The EPS contents in suspended and attached sludge of E-AnMBR were significantly reduced by 41.8 ± 3.3% and 77.4 ± 14.5% than that of C-AnMBR, respectively. These results suggested that E-AnMBR has lower sludge disposal pressure, higher stability and methane recovery potential. Not only that, E-AnMBR successfully reduced membrane resistance, delaying the fouling rate by 31.0-38.5%. Finally, the linear relationship between EPS characteristics and membrane pollution was determined.

20.
Lab Invest ; 102(5): 524-533, 2022 05.
Article in English | MEDLINE | ID: mdl-35022505

ABSTRACT

Ubiquitin-specific protease 35 (USP35) is a member of the ubiquitin-specific protease family (USP), which influences the progression of multiple cancers by deubiquitinating a variety of substrates. In recent years, the specific role of USP35 was begun to be understood. In this study, we investigated the role and underlying molecular mechanisms of USP35 in chemoresistance of non-small cell lung cancer (NSCLC) to cisplatin. Depletion of USP35 increased the sensitivity of NSCLC to cisplatin-induced apoptosis. We screened and identified a potential substrate of USP35, baculoviral IAP repeat containing 3 (BIRC3). Overexpression of USP35 in H460 cells increased the abundance of BIRC3, while USP35 knockdown in Anip973 cells decreased BIRC3 abundance. Notably, USP35 directly interacted with and stabilized BIRC3 through lys48-mediated polyubiquitination via its deubiquitinating enzyme activity. USP35 alleviated cisplatin-induced cell apoptosis by regulating BIRC3 levels in NSCLC cells. Moreover, a significant positive correlation between USP35 and BIRC3 protein expression levels was observed in human NSCLC tissues. Taken together, USP35 plays a vital role in resistance to cisplatin-induced cell death through the overexpression of BIRC3. USP35 might be a potentially novel therapeutic target in human NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Apoptosis , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Endopeptidases/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Ubiquitin-Specific Proteases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...